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A Decade of Neural Networks: Practical Applications and Prospects

Foreword

Welcome to the JPL Neural Network Workshop. Sponsored by NASA and DoD, this
workshop brings together sponsoring agencies, active researchers, and the user
community to formulate a vision for the next decade of neural network research and
application prospects. While the speed and computing power of microprocessors
continue to grow at an ever-increasing pace ushering in the era of information
supertraffic, the demand to intelligently and adaptively deal with the complex, fuzzy, and
often ill-defined world around us remains to a large extent unaddressed. Powerful, highly
parallel computing paradigms such as neural networks promise to have a major impact in
addressing these needs.

The theme of the workshop is on practical applications. To this end, the workshop begins
with a series of invited talks focusing on a variety of applications both in control and signal
processing. Following the presentations, we will split into working groups to formulate a
road map for future R&D. The splinter groups will identify key application areas for the
future and address issues such as technology insertion.

In order to promote the cross-fertilization of ideas and seed discussion, two social events
have been planned at the Pasadena Hilton. On Wednesday evening, there will be a
welcome reception with hors d'oeuvres and a cash bar at the Hilton patio. On Thursday
evening, a sit-down dinner will be served in the Monterey room.

Abstracts and excerpts of presentation materials from the invited talks are included in this
booklet. A final report summarizing the workshop and splinter group findings will be
published later.

Thank you for your participation in what promises to be an interesting and timely forum.
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Missileborne Artificial Vision Systelix (MAVIS)
David K. Andes, James C. Witham, Michael D. Miles
Naval Air Warfare Center - Weapons Division

China Lake, CA 93555

ABSTRACT

Several years ago when INTEL and China Lake designed the ETANN chip, analog VLSI appeared to be
the only way to do high density neural computing. In the last five years, however, digital parallel
processing chips capable of performing neural computation functions have evolved to the point of rough
equality with analog chips in system level computational density. The Naval Air Warfare Center, China
Lake has developed a real time, hardware and software system designed to implement and evaluate
biologically inspired retinal and cortical models.

The hardware is based on the Adaptive Solutions Inc. massively parallel CNAPS system COHO boards.

ach COHO board is a standard size 6U VME card featuring 256 fixed point, RISC processors running at
20 MHz in a SIMD configuration. Each COHO board has a Companion board built to support a real time
VSB interface to an imaging seeker, a NTSC camiera and to other COHO boards. The system is designed to
have multiple SIMD machines each performing different Corticomorphic functions.

The system level software has been developed which allows a high level description of Corticomorphic
structures to be translated into the native microcode of the CNAPS chips. Corticomorphic structures are
those neural structures with a form similar to that of the retina, the lateral geniculate nucleus or the visual
cortex.

- This real time hardware system is designed to be shrunk into a volume compatible with air launched tactical

missiles. Initial versions of the software and hardware have been completed and are in the early stages of
integration with a missile seeker.

INTRODUCTION

The onboard processing requirements of air intercept missiles are some of the most demanding imaginable.
This is especially true for missiles with imaging focal plane array detectors. Input is measured in
megabytes per second. The volume available is a few cubic inches. Decisions are required in milliseconds.
The power available is just a few watts and heat dissipation is minimal. Then the system must live in an
environment that includes salt air, desert heat, Arctic conditions, high humidity and rapid altitude changes.
Aircraft systems have similar constraints but the power, volume and heat dissipation problems are slightly
less severe. If we are to survive in a competitive world, however, we must continue to upgrade the internal
intelligence of our systems.

Biological systems have met and overcome even greater competitive challenges in real-time embedded
computing. Biosystems have similar constraints in power, volume, heat dissipation while requiring high
speed computation including high data rate sensors of several varieties. There should be much to learn
from the many, highly successful, integrated, real-time biocomputers that surround us every day. The
MAUVIS project is an atiempt to do just that.

Biological Computation Systems
The following is a partial list of some of the salient characteristics of biological computation systems:
1. Massive parallelism is the first obvious characteristic. We cannot hope to come even close to the

biosystems in this area but at least it gives a definite direction in which to move. Many simple processors
working almost independently can clearly achieve great results.
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2. Most biocomputation is based only on locally available information. Transmitting information beyond a
few tenths of a millimeter becomes very expensive.

3. There is a lack of emphasis on precision in the elementary processors (neurons). In the cases where
more precision is necessary more elementary processors are dedicated to the task.

4. Local computational centers share information with several other local centers in a bi-directional
manner. Computation is shared in a non-hierarchical or only a semi-hierarchical manner. In fact most of
the information entering the local processing centers is not raw sensor data but partially processed
information from other local centers. ’ '

5. The computational components of biosystems are finely tuned parts of a whole system. Competition
has not allowed much that is inefficient or unnecessary. The processing devoied to sensor data is well
matched to the quality and importance of the information.

Corticomorphic Processing

The mammalian vision system has some special structural characteristics which are clearly specialized for
the processing of two dimensional image information. An abstraction of the form of this system is used in
the MAVIS project and has been given the name Corticomorphic Processing. Although this model is an
abstraction of the processing centers of the visual system (such as the retina and patches of visual cortex) it
is hoped that models of other areas of the cortex will fit into this general form. The Corticomorphic
abstraction is an Artificial Neural Network (ANN) though not of one of the standard forms (e.g.
Backpropagation, ART, Hopfield, etc.).

The early processing stages of the visual system (areas like the retina, the Lateral Geniculate Nucleus,
primary visual cortex, V2, V3, etc.) have computational forms which are similar. Each area is a "patch” of
computational elements laid out in a form which preserves, at least locally, the two dimensional
relationships in the original image. Within each of the patches there are various types of neurons arranged
in sheets or layers that run throughout the entire patch. Even though the neurons on different sheets
perform very different functions the rough topology of the original image is preserved in each sheet. A
column cut vertically into a patch through all the sheets will find neurons which only respond to a small
local area of the original image. Inputs into each sheet of a patch come in through topology preserving
maps from other sheets. Most inputs into a sheet are from sheets within the same patch but some come
from sheets within other patches. The strengths of the interactions between neural processing elements can
be approximated by the mathematical form of convolution kernels. This is an approximation that is only
locally true in real biosystems since it requires exactly the same processing to take place throughout the
entire length and width of a paich.

Formalism
The introduction of some formalism may make all this more precise if not clearer. Let
O(x,y.ij:t)

be the output value of the neural processing element at the (x,y) position of the image space in the i-th layer
of the j-th patch at time t. Then

L(m,n) = { O(x.y.ij,0) } for i=m and j=n
is the m-th sheet or layer in the j-th patch. Note that L(m,n) is a set of neural processing elements. Note
also that we have shifted from the more descriptive word "sheet” to the more traditional ANN term "layer”.
Then let

P(i) = { L(m)X) } k=i

be the i-th patch. Note that P(i) is a set of layers. '
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Typically the number of layers in a patch runs from three to ten and only a few of the layers in a patch have
outputs to layers in other patches. The output value of the neural processing elements of a layer L(ij) is
calculated as follows:

O(X,YJJJ) = FIJ ( z (ai,j,S,p + gi,j,s,p Z ki,j,s,pa,m) O(X'I,Y‘k,syp,[‘bij,s,p) ) ) (1)
The first sum is a sum over s and p where p runs over all patches driving this layer L(i,j) and s runs over all

layers in p which connect to the layer L(i,j). The second sum is also a double sum over 1 and m which run
through enough positive and negative integers to cover the kernel ki js.p-

In this expression:
Fjj is the nonlinear function associated with the neural processing elements of the layer L(i,j).

kij,s,p is the kemel weight function which determines the effect of the L(s,p) layer on the L(i,j)
layer.

bij,s,p is either zero (no time delay) or one (one time step delay) depending on whether the
infjormation affecting L(i,j) from L(s,p) is to be current or delayed.

ajj,s,p and gj j,s,p are appropriate offset and gain numbers affecting the action of layer L(s,p) on
layer L(ij).
In plain English this amounts to the following: each layer in each patch is calculated by applying a set of
kernel convolutions to one or more other layers, summing the results and then passing it throngh a possibly
non-linear function. Gains, offsets and time delays may be applied where necessary.
Although the sums look complex they typically contain only one to three kernel interactions with most of
the interactions occurring within the same patch (i.e. j=p). In fact a layer may interact with itself in which

case j=p and i=s and b J.s,p must be one. This self interaction allows for temporal integration (both point
and area).

One more basic construct is useful and that is the idea of a column. Let

C(u,v,p)
be the symbol for the column centered on the point (u,v) in image space on patch p. Then if

Rx(C) and Ry(C)
are the x and y radii of the column we have

C(u,v,p) = { O(x,y,u,v,t) € L(i,j) such that Ix-ul < Rx(C) and ly-jl <Ry(C) ) 2
That is a column is the set of all points (outputs of neural processing elements) in pieces of sheets (or
layers) from a single patch which are all cut to the same size and all of which are centered at the same place
in image space. Note that for C(u,v,p) the values of u, v, Rx(C), Ry(C) need not be integers.
History of Embedded Neurocomputing at China Lake
For the past fifteen years the Office of Naval Research has been funding work at China Lake with the aim
of increasing the capability of embedded computational systems for air intercept weapons. Most of the
work described in this paper was done under this ONR funding although a significant portion of the early
work in several of the areas was started under local funding at China Lake.
In the early 1980's it became clear that traditional Artificial Intelligence techniques had only limited utility

for embedded real-time systems in air intercept missiles. This was due mostly to the inability of the
hardware of the time to match the severe constraints imposed by these systems. In the mid 1980's the
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biologically inspired field of Artificial Neural Networks showed promise of helping to overcome this
computational bottleneck. The ideas were amenable to implementation in high speed, parallel, analog
circuitry and learning algorithms could be used to circumvent the problems associated with analog
imprecision. Early experiments and designs at China Lake led to the development of the Intel ETANN chip
[1]. This chip is capable of about three billion operations per second in a fraction of a square inch.

In 1989 the Missileborne Artificial Neural Network Demonstration (MINND) program was initiated to
exploit the availability of the new computational power. The MINND program was successfully completed
in 1992 with real time demonstrations on real air targets [2]. The architecture of the MINND computer
allowed a simple version of the Corticomorphic Processing scheme to be implemented. The fixed form of
the analog circuitry, however, put rigid constraints on the types of computations that could be performed.
Toward the end of the MINND program it became clear that digital computation was catching up to the
analog when total system level computational density was considered. In particular the Adaptive Solutions
CNAPS chip [3] had characteristics that allowed us to design the current MAVIS system. MAVIS has
system level performance similar to the ETANN based MINND system but without the associated analog
problems. Packaging techniques are available which allow the design of the MAVIS system to be reduced
enough to fit the constraints of an air intercept missile. The sections of this paper that follow describe the
hardware and software components of the MAVIS system.

MAVIS HARDWARE OVERVIEW

The MAVIS system is built around the Adaptive Solutions CNAPS chip. Each chip has 64 fixed point,
RISC processors that currently operate at 20 MHz. These processors are designed to operate in an SIMD
configuration where several CNAPS chips may be under the control of a single sequencer chip [4]. Each of
the 64 processing nodes (PNs) on each CNAPS chip has an adder, a multiplier, a logic unit, 4K bytes of
local memory, several general purpose registers, and inter-PN bussing. The system uses the Adaptive
Solutions COHO boards [5] each of which mounts four CNAPS chips for a total of 256 PNs per board. The
MAVIS system is designed to accommodate several of these COHO boards each of which is used to
implement one patch of Corticomorphic processing. A high speed bus intercommunication scheme has
been designed to allow high bandwidth injection of sensor data as well as high bandwidth inter-patch
communication,

An overview of the initial MAVIS system can be seen in Figure 1. It shows an imaging seeker connected
to the MAVIS card cage, a Motorola MVME-147 board (68030 processor), two Adaptive Solutions Inc.
COHO boards, two NAWC designed COHO Companion boards, and a NAWC designed Custom 1/O board.
The diagram also shows two video display monitors and two VCRs used for displaying and recording raw
and processed video. )

Adaptive Solutions Inc. has a set of integrated tools that can be used to develop and debug code for their
COHO board by using a SUN SPARC station connected to the MVME-147 via an ethernet network. Code
is developed and compiled on the SUN workstation and then downloaded to the COHO board to run.

Hardware Specifics

COHO Board

The COHO board is a commercially available 6U VME board. The major components of the board are
highlighted in Figure 2. :

The board has provisions for attaching peripheral devices or memory onto its local bus. The name of this
local bus is the CNAPS/VME local bus (CVLB). The CVLB is an implementation of the company’s
ADAPTbus™ applied to this specific board and its peripherals. There is a 100 pin impedance matched
connector on the COHO board which provides access 10 the CVLB. It is this connector that the COHO
board uses to interface to the COHO Companion board.
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A block diagram for the COHO Companion board is shown in Figure 3. This architecture, made up of two
ping-pong memories, was chosen because it allowed images to be read from or written to both memories
simultaneously. For instance, as an incoming image is being written into Bank 1, an image can be read out
of Bank 2, processed and then written back to Bank 2 without impeding the incoming image. When both
tasks are finished the memories are swapped, so that the image in Bank 1 may be processed while a new
incoming image may be written into Bank 2.
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If one assumes an image patch of 128 by 128 and a frame rate of 60 frames per second the amount of data
that is actually passed into the system is approximately 1 MByte per second. With the MAVIS system
sewup, data is processed on each COHO board (patch) and is available for display only when sent over an
interconnection bus. Thus under these assumptions with only a single COHO/COHO Companion board
pair the final 1/O requirements are only about 2 MBytes/sec. When more than a single pair of boards are
used, however, there will be interaction between boards and, with more interaction, more bus bandwidth is

required. If larger images or higher video rates are required the bus bandwidth also increases. For these

reasons, it was decided to offload the data from the VME bus and use the VSB bus (VME Subsystem Bus).:

The current implementation is able to move data at 12 MBytes/second over the VSB. Figure 4 shows the
buses and the type of data that is transferred on each bus.
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Figure 4

Custom /O Board

The Custom /O board was fabricated to comply with the digital video and timing signals for an imaging
seeker. The board is also capable of displaying the incoming digital video, plus an extra video channe] that
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may be used to show the results of processed or intermediate data It is also capable of selecting an Area Of
Interest (AOT) of variable size and location, from the incoming video, and transmitting it on the VSB Bus.

As shown in Figure 5 the system is based around a pair of dual ported memories, one for the input, and one
for the output. The output video frame’s timing is in lock step with the input video frame's timing. This
feature could be used to reinsert the processed digital video back into the data stream that it was taken from.

Dual Digital
u :
AOI Video
¢ Ported 144 Filter — and
Memory Timing
In
VSB VSB
- Interface H
: Dual Digital
—» Ported ——————p Video
Memory Out
Figure 5

System Options

Having the MAVIS system tied directly to a real missile seeker has many advantages for answering
questions related directly to that particular system. There are, however, many disadvantages associated
with such a system. A second system option is also being implemented which is much more general than
the single seeker system described above. The second system uses a pan/tilt unit with a camera mounted to
it in place of the imaging secker. Several additional boards are required to interface to a camera with a
pan/tilt unit: a frame grabber/display board, a D/A (Digital to Analog) board, and a single board computer
(SBC). A general purpose microprocessor on the SBC receives information from the COHO board with a
target location and generates the angle rates for the pan/tilt unit and sends them out via the D/A board.
The microprocessor can also take slave commands from a joystick for external target designation.

MAYVIS SOFTWARE OVERVIEW

The system level software is designed to combine flexibility with ease of use in the implementation of a
variety of Corticomorphic structures. The system level software is written in C and takes a text file
containing Corticomorphic descriptors and produces microcode which is native to the CNAPS processors.

The first step in implementing a Corticomorphic concept is to develop a block diagram of the system to be
modeled. Figure 6 shows a relatively simple model of the outer retina. The model itself is broken up into
several layers. These layers themselves are idealized models of distinct types of retinal neurons. The boxes
labeled with the capital letter K and a number refer to the kernel which will be used in the convolutional
interaction between the layers. A kernel is a square matrix made up of integer weights designed to have a
specific effect, such as edge enhancement or smoothing.

As shown in equation (1) the creation of each layer is dependent upon several things: the other layers in the
model, the kernels with which the layers will be convolved, and the method of combining the results. The
software allows for simple definitions of feedback paths both from a layer further along in the model path
and from a layer to itself. This self interaction is accomplished by storing a layer in memory when it is
created at time t-1, so that it may be used in the creation of a layer at time t.
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From the block diagram, the user must create a model file and kernel files. A model file is a simple text
file containing a description of the elements the user wishes to include in the model. Kemel files are text
files containing the dimensions, weights, gains and offsets for a kernel. The system software reads the
model file, which references the kemel files as they are needed and uses its' specifications to generate
another file containing CNAPS microcode. This microcode is assembled using the CNAPS assembler and
then loaded into the COHO program memory space. At this point, the user needs only to assert a start
command for the software to assume command of the hardware system.

There are certain details the software must accommodate to implement equation (1). Figure 7 shows the
application of a kernel (ki j,s,p) O the intersection of a layer L(i,j) and a column C(u,v.p) as described in
equation (2). The pixels surrounding this portion of the column are part of a software construct known as a
tile border. As indicated in the figure, the tile border and the column section comprise the tile itself. In
order for the kernel to be applied so that the result has the proper correspondence to the pixels along the
edges of the column, extra information is required. This extra information is borrowed from neighboring
PN's and comprises the tile border. If no tile border was constructed, and the kernel was simply applied as
in Figure 8, the result would be the shrinking of the column size as in Figure 9.

The patches referred to in the equations are actually separate COHO boards. The software allows the user
to specify which board will act as which patch and which layers the patch will be responsible for
processing.
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GENERAL NOTES

There are several extensions to the basic Corticomorphic structure whic.:h are already planned. None of
these require a modification to the form of the hardware.

1. The simplified computational form of equation (1) can be extended to allow the multiplication of
convolutions of layers as well as the sum. Sums and products could also be mixed in the same evaluation.
This modification has already been tried and is not included in equation (1) mainly because it complicates
the formalism and the write-up. Multiplication takes no more time than addition and hence this
modification costs nothing in compute time. The same cannot be said of the next two extensions.

2. The terms in the equation (1) which appear as constants (such as kernel weights, gains and offsets) could
be made to vary with time since they are stored in memory local to each controller.

3. Time delays of longer than one frame have been implemented. The cost is in local memory and some in
compute time.



It is important to note that most of the current image processing schemes (neural net or otherwise) can be
put into the form of equation (1) or a minor extension of it as given above. Hence the MAVIS system
provides a good real-time test bed for many current image processing ideas.

CONCLUSION
MAVIS is an attempt to produce a computational structure which emulates the form of the processing used
in the mammalian vision systems. The eye and the brain are a coupled system which obtains an
understanding of the environment by interacting with it. It is hoped that the investigation of this complex
interaction will shed light on the functioning of real cortex as well as allowing us to design better sensing
systems for both military and non-military applications.
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APPLICATION OF ADAPTIVE LEARNING TO DIAGNOSTICS:
THE ROLE OF NEURAL NETWORKS IN DEVELOPING
PRACTICAL SOLUTIONS TO TWO MAJOR PROBLEMS

Kenneth A. Marko
Ford Research Laboratory
Ford Motor Company
Dearborn, Michigan 48121-2054

AN EVOLUTIONARY APPROACH TO PROCESS CONTROL AND DIAGNOSTICS
BASED ON ADAPTIVE LEARNING

In previous work, we have examined the application of various Artificial Intelligence (AI)
learning paradigms to the problem of diagnosing faults in complex systems in studies to
determine whether various learning systems could be properly trained to identify faults in
systems under test. The evaluation of these learning paradigms was based upon their
performance on large, stable databases which were expected to be fully representative of the
data such trained systems would be called upon to classify. These studies therefore proceeded
from the assumption that a great deal of information about the systems to be diagnosed was
available at the start of the program and that new, incoming information would be very similar
to the data upon which the system was trained. In order to develop viable schemes for real
applications at manufacturing plants it is necessary to relax these constraints and to construct
trainable diagnostic systems when:

1. Very little information from the systems under test is available at the outset of the

program.
2. The data from the systems under test changes significantly and in unpredictable
ways during the development of the diagnostic system.

11
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3. We wish not only to diagnose faults in the manufactured systems, but also to
monitor the manufacturing process to control the quality of the products.

There are several general characteristics of the problem that we can readily identify:

« Our interest is primarily on mechanical faults rather than electronic faults since the
products (in this case, automobile engines) at this stage in the manufacturing process
are undergoing tests in the absence of their electronic control systems.

« Engines operate only briefly over a restricted range, and all engines are of the same
vintage, i.e. this problem is representative of a manufacturing test process rather than a
service garage test process, and is, in fact, simpler than the service problem.

« Complete knowledge of all failure modes is not known a priori, and new classes of
abnormal operation must be identified as data is obtained. Additionally, modifications
to the manufacturing process will alter the signature of normal engines on a frequent,
but unpredictable, time scale. The system must adapt to these changes as quickly as
possible, with the constraint that training data will be very limited, typically a few
hundred samples. o

« The input data consists of information from only a few sensors, sampled very
frequently, making the problem more like pattern recognition in complex waveforms
and less like a sensor fusion problem. o

» Training data for faulty engines is a tiny fraction of the data available for normal
engines and the statistical distributions for very rare abnormalities may never be known
very well.

« The diagnostic system must operate continuously, and adapt quickly to changes in
the product performance since continuous improvement in the complex manufacturing
process must be anticipated.

These characteristics together make the classification problem quite difficult. In particular,
our classification system must have a very low false alarm rate, a high accuracy rate for
identification of faults, be readily adaptable to changes in the process, and still function as a
“novelty” detector to identify engines with new faults not present in training samples.
Straightforward application of common learning schemes such as backpropagation in neural
networks were not satisfactory for this development program. However, we will demonstrate
that a combination of traditional methods and modern learning paradigms, does provide a
means of developing a reliable diagnostic system under realistic conditions if we permit the
program to evolve as information is gathered. Briefly, our approach is to break the
classification task down into modular processes that can be modified to suit each individual
application. We utilize traditional classifier systems at the outset, and bring neural networks
in later in the process when suitable sample sizes are available. The development of
classification systems is also expedited in this process through the use of complexity reduction
algorithms such as Principal Component Analysis (PCA) which eliminates the storage and
analysis of unneeded or redundant data. Our methods also rely heavily on Monte Carlo
simulation to generate statistically representative samples of training data from rather sparse
samples of real data. The analysis is applied to engine data obtained from a sample of engines
at end-of-line tests conducted as part of a quality assurance program.

DEVELOPMENT OF ON BOARD DIAGNOSTICS FOR EMISSION MONITORING:
MISFIRE MONITORS FOR PRODUCTION VEHICLES

The automotive industry is facing a new challenge in meeting regulations mandating
that all production vehicles continuously monitor their tailpipe emissions and provide
indications to the driver when the vehicles are out of compliance. The task is especially
difficult due to the fact that no direct measures of emission gases are available (reliable,

12

i &

@ @

un =m el

B

&40



-
b

” i

o

qa!

L

1

v

aunr

inexpensive sensors have not been developed), so the diagnostics must be inferential. The
development of one of the monitors, the misfire diagnostic, provides some insight into how
modern adaptive learning methods can be applied to a very complex and demanding task. All
auto manufacturers will be introducing hardware and software to meet the statutory
requirements beginning this model year. It is useful to note that none of the systems being
introduced appear to rely directly on ANS (Artificial Neural Systems) technology. However, at
least in our work, ANS methods have played and continue to play an important role in
developing means to comply with the legislation. The short development time required for
these programs, coupled with the limited capabilities of the on-board microprocessors have
certainly had a role in steering the deployed systems away from ANS technology. Yet, these
facts do not fully explain why ANS methods are not used in the production systems. Our
analysis suggests that "conventional” ANS, in the form of feedforward networks trained by
the backpropagation learning schemes, have deficiencies which currently limit the role of these
systems in practical applications involving large and complex databases. We have identified
several issues which must be addressed and solved before ANS methods can be expected to be
employed in developing the solutions to these diagnostic problems. The issues and the
identification of possible solutions suggest that ANS methods, properly used, may ultimately
provide the best solution to the diagnostic requirements for vehicle systems.

13
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= e | I. INTRODUCTION

= ;  We have previously reported on the use neural networks for detection and identification of faults in

, complex microprocessor controlled powertrain systems [1,2]. The data analyzed in those studies consisted

= - of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The

o specific task of the classification system was to classify sysiem operation as nominal or abnormal and to

identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or

= actuators in the powertrain system as it was exercised over its full operating range. The use of data from a
variety of sources, each contributing some potentially useful information to the classification task, is

— commonly referred to as sensor fusion and typifies the type of problems successfully addressed using

= neural networks.

In this work, we explore the application of neural networks to a different diagnostic problem, the
diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.
o= While this problem shares a number of characteristics of the previous studies, there are several significant
= . differences.

= * Our interest here is primarily on mechanical faults rather than electronic faults since the engine at

- this stage in the manufacturing process is undergoing "cold test", i.e. it is connected to an electric
dynamometer.

= * Engines operate only briefly over a restricted range, and all engines are of the same vintage.

- * Complete knowledge of all failure modes is not known a priori, and new classes of abnormal

- operation must be identified as data is obtained. Additionally, modifications to the manufacturing
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process will alter the signature of normal engines on a frequent, but unpredictable, time scale. The
system must adapt to these changes as quickly as possible, with the constraint that training data will
be very limited. '

» The input data consists of information from fewer sensors sampled more frequently, making the
problem more like pattern recognition in complex waveforms and less like a sensor fusion problem.
» Training data for faulty engines is a tiny fraction of the data available for normal engines and the
statistical distributions for very rare abnormalities may never be known very well.

» We are interested not only in detecting and diagnosing faults, but also in monitoring drifts from
nominal in the manufacturing process.

All of these circumstances conspire to make this classification problem quite difficult. In particular, this
classification system must have a very low false alarm rate, a high accuracy rate for identification of faults,
be readily adaptable to changes in the process and still function as a “novelty” detector to identify engines
with new faults not presented in training samples. The simple, brute force application of backpropagation to
analysis of raw data did not reliably produce a classifier with these properties. However, the methods we
have developed can deal successfully with these circumstances and be applied as well to a wide variety of
other classification problems. ,

Briefly, our approach is to break the classification task down into elemental processes that can be
modified to suit each individual application. We choose to utilize traditional classifier systems and neural
networks together to obtain optimum performance for this diagnostic problem. The methods also rely
heavily on Monte Carlo simulation to generate statistically representative samples of training data from rather
sparse samples of real data. These simulations boot-strap information from reasonable assumptions about
the underlying statistics which are updated as empirical statistical distributions emerge. Such mathematical
artifices permit us to evaluate the expected performance of our classification system early in the development

process, before we have an adequate amount of actual data and can be easily adapted to utilize the true
statistics of the data.

I1. INITIAL STUDIES

Initially we used a 4.0 liter 6 cylinder engine to investigate the feasibility of comprehensive cold test
diagnostics on a representative sample of data. Only a single engine was available, and this engine was
disassembled and reassembled with deliberately introduced faults to provide the initial database for our
investigations. The engine was motored, typically at about 150 rpm, by an electric motor with an in-line
torque transducer to measure the dynamic crankshaft torque. Simultaneously, pressure transducers
monitored the intake and exhaust manifold pressures, the crankcase air pressure and the oil pressure.
Measurements of each parameter were taken every 10 crank angle degrees, and a complete data sample
consists of 70 measurements on each trace (2 x 35 samples per revolution due to a 36-1 tooth encoding
wheel). Several cycles could be averaged together, but the observed cycle to cycle fluctuations were
extremely small and one cycle appeared 1o be satisfactory. Therefore, the actual data acquisition time for this
test was less than 1 second. Typical samples of data from normal and abnormal operation are shown in
Figure 1. Visible on these traces are clear features associated with the engine fault, which an expert
diagnostician could conceivably use to identify the nature of the fault. These traces were selected to manifest
such recognizable features which often lead one to suspect that a simple rule based system could be
constructed to perform the diagnostics. However, the engine to engine variability and the need to
distinguish not only any one fault from normal operation, but also from all other faults, complicates
matters. Closer examination of the traces reveals that in addition to primary discriminating features present at
particular points in the trace, additional but smaller correlated features are present elsewhere in the traces. It
is desirable to utilize all helpful discriminating features to construct a robust classifier

We used a conventional backpropagation (BP) neural network in a first assault on this problem.
However, the raw data from test engine produced an unwicldy test vector with several hundred elements.
Data were collected from a test suite of 28 different faults and normal operation (29 classes) and a data base
of about 1500 test vectors was obtained. This data was artificially augmented with uncorrelated “noise™ in
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an attempt to introduce process noise (the variability that could be expected from a larger sample of
“identical” engines) into the data set. The data was divided into two equal parts for training and testing. A
BP network with a 350-50-29 configuration (350 input nodes, 50 hidden nodes and 29 output nodes) was
trained and performed acceptably well on the classification task (>98% accuracy). However, although
networks of this size are manageable on small workstations (training was ultimately performed on an IBM

training and testing times.

One approach to dimensionality reduction is to select a set of “features” in the data, based upon an
understanding of the physical processes involved (e.g. zero crossing times, peak-to-valley ratios of torque
etc.). We elected not to pursue this approach because we wanted 10 develop a scheme which
required as little a priori knowledge as possible and therefore was applicable to a wide range of problems.
Principal Component Analysis (PCA) is one well-known means of developing a new representation for a
sample vector space. Typically, the PCA provides a compact representation of a sample vector space from
which effective classifiers can be constructed. A full treatment of PCA is given in a text by Jolliffe, but a

using the original data representations.

If we apply PCA 10 our data set and terminate the PCA process after 99% of the variability has been
accounted for, we obtain a vector space in the PCA representation with 27 components. A neural network in
a 27-16-29 configuration (about 900 trainable weights), trained with 25% of the number of passes through
the training set required for the raw data. Combining the smaller number of weight updates required with
the smaller number of passes through the data, the use of the PC representation reduced the network training
time by a factor of 100.

any physical measurement is quite difficult and the computational task involves inverting very large
matrices. To avoid these difficultics and to provide a2 means of visualizing and interpreting the PCA
representation, we divided the input vector space inlo scveral subspaces and performed the PCA on those
subspaces. The subspaces were the individual cylinder torque traces, the overall torque trace, the separate

17
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II1. ANALYSIS

For a case study on real data, we were presented with data from over 1000 different pre-production
engines. This dataset was obtained from a plant survey and lacked a bona fide classification for each
engine, although very good engines and engines with serious defects were quite evident from the graphs.
The problem was to develop a classifier which could identify GOOD from BAD and also identify any faults
present in the engines under test. As a first step, we visually scanned all the raw data and identified as
many engines as possible as GOOD or BAD and assembled a training set from this manually tagged data. A
neural network was trained on this data set until its RMS error ceased to decrease. The classifications of the
network were compared with ours and some adjustments were made to our classifications and the network
was retrained on the retagged data set. After a few iterations on a training sample of 300 engines, the
process converged to agreement between the network classifications and ours. The network was tested on
the remaining engines and the results were compared with a technician’s analysis of the data. In most cases,
the expert technician and the network were in agreement, although the technician was analyzing raw data and
the network was analyzing the PCA data. -

In reviewing this database, we noticed that sudden changes in the signal spectra took place as a result of
changes introduced in the manufacturing process. For example, such an effect could be caused by a change
in the lubricating oil in the engine which reduces the tunover torque. This situation caused batches of data
within the database to have different means and slightly different variances. Consequently, the amount of
real data which would be available to provide examples for training sets secemed likely to be very limited.
Further analysis of the PC’s revealed that the covariance matrix of the PC data contained off-diagonal terms,
indicating that the individual raw signal traces from each engine were correlated. It was noted that the
sample means of the PC’s varied from production batch to batch, but that the covariance matrix was stable.
To re-train a network each time such a shift in the production occurred would require copious quantities of
data, which would not be available until some time after each change in the production process. A viable
solution to this problem is to utilize the fact that the second-order statistics of the measurement problem are
stable and incorporate Monte Carlo methods to generate sufficient data from estimates of the sample means.
Unlike our initial study in which we utilized uncorrelated noise, we now needed to generate Monte Carlo
data with the same covariance as the real data. A detailed description of the means to carry out this
procedure is contained in the Appendix. The Monte Carlo process may be used to generate augmented data
sets of both normal and faulty engines if one makes the reasonable assumption that the faulty engines’' PC’s
have covariance matrices similar to that of the normals. This data augmentation process also helps to identify
“class clusters” that are easy to separate. In the past, higher success rates for proper class identification of
abnormal situations were claimed than could actually be obtained in practice because the variance in the
clusters of abnormals was not properly accounted for. In our approach, we base our estimates of the cluster
statistics on the historical data and amend the statistics as necessary to be consistent with the incoming data.
In most cases, the proper consideration of all the cluster variances diminishes the ability to separate all the
fault categories. However, the performance observed in development provides a more accurate gauge of
final performance. , , o -

In attempting to provide a diagnostic tool which is easy 10 manage and re-train, we noted that the PCA
data, broken down into the 11 subspaces could be very effectively classified as GOOD or BAD by a hard

shell classifier defined by elliptical shells centered on the centroids of the distribution of GOOD engines with ~

axes radii determined by the variance of the distributions. Normalization of the distributions to zero mean
and unit variance simpiifies the classifier boundarics to spherical shells. An ideal engine would be most
similar to the best engine identified or the mean of an ensemble of such engines. If the deviation of an
engine from such a distribution is larger than an acceptable value, the engine is declared to be unsatisfactory.
In the early stages of this functional testing, no empirical data was available for selecting the tolerance
boundary. We used Monte Carlo simulations to determinc the variations we could expect from a single class
of data with the proper covariance matrix. From this simulation we determined that shells with radii shown
in Figure 3 would contain virtally all of the Monte Carlo samples. To pass, an engine must fall within all
11 shells constructed for the 11 vector PC subspaces. However, since the Monte Carlo statistics are
Gaussian, a fraction the samples will fall outside some spheres. If the values associated with the hard-shell
classifiers are selected as shown in Figure 3, we have determined that the GOOD engines should score 9.0
or higher (on a scale of 11) in order to pass 9% of the samples. The histogram of the Monte Carlo data for
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the expected distribution of GOOD engines is shown in Figure 4. If the engine falls below the threshold
value, then the neural network will be used to identify the failure present. This approach provides an easily
understandable, traditional classifier for acceptance and rejection based upon the assumption of a convex
data set for the normal engines. The neural network is used for the task it can perform well, fault
classification, which may involve very odd-shaped or non-convex sets of data. We anticipate that the class
clusters are well-separated, but perhaps not by simple boundaries. The data set from the plant is consistent
with this conjecture. Typically, the faulty engines from the production data scored below a 6 or 7, so that we
may expect that the distributions of GOOD and BAD are as separable as they were in the initial laboratory
study with the 3.0 liter engine. In this situation, we can effectively use standard feedforward networks
trained by backpropagation, or utilize Restricted Coulomb Energy (RCE) networks which train much faster.

The process control aspect of this approach is evident if we monitor the engine scores as a function of
time. For each major change in the production, the engine test scores dropped until new sample means were
calculated. The neural network can provide information on the nature of the problem by indicating the
"direction” or the tendency of a fault. For BP, we use one unit in the output layer for each fault class,, and
as the data points move in the direction of a known fault, the GOOD output node decreases in value and the
FAULT node associated with the class direction in which the data is moving increases in value. Thus, the
neural network may be used to provide prognostic information about engines that have not crossed the
threshold for outright rejection. We note that the BP network in this situation operates with the full 35
dimensional input space as a fully interconnected network. Investigations are underway to determine if
subspace groupings, as used for the hard shell acceptance classifier, applied to the RCE network provide
any benefits.

IV. CONCLUSIONS

We have demonstrated how a combination of conventional statistical processing methods and neural
networks can be combined to create a classifier system for engine diagnostics. The most significant
computational effort is required to compute the PCA and to properly develop the hard-shell classifiers using
data sets augmented with Monte Carlo methods. Once these procedures are carried out, the application of
neural networks to the data set to obtain the trainable classifier is quite straightforward. We expect that these
methods are applicable 1o a wide range of classification problems.
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Figure 2. Plot of artifically induced "faults” in PC represenation of exhaust manifold
signals. Dense cluster of dots represents "normal” engines. The other other signals
indicate the effects of introducing various faults, such as camshaft timing error, or leaks
into the engine.
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Document Analysis with Neural Net Circuits
Hans Peter Graf
AT&T Bell Laboratories, Holmdel, NJ 07733

: - Document analysis is one of the main applications of machine vision today and offers

great opportunities for neural net circuits. Despite more and more data processing with
- computers, the number of paper documents is still increasing rapidly. A fast translation
of data from paper into electronic format is needed almost everywhere, and when done
manually, this is a time consuming process. Markets range from small scanners for
personal use to high-volume document analysis systems, such as address readers for the
postal service or check processing systems for banks.

A major concern with present systems is the accuracy of the automatic interpretation.
Systems tend to work well, if the image is not too complex and its quality is good, i.e.
there is no noise in the image and the print quality is good. Todays algorithms, however,
fail miserably when noise is present, when the print quality is poor or when the layout is
complex. A common approach to circumvent these problems is, to restrict the variations
of the documents handled by a system.

Improving the robustness of algorithms, to deal with a wider variety of conditions, seems
always to lead to algorithms requiring an enormous amount of computation. This is a
good opportunity for specialized circuits, such as neural net chips. Key for a successful
integration of such a circuit into an application is that all the algorithms, from start to
end, are taken into account and that the throughput of each stage is well balanced. Often
neural net circuits were designed with one particular algorithm in mind, for example the
character recognition. But in an application other processing steps, such as the layout
analysis or just the discrimination between figures and text, may require more
computation and represent the throughput bottleneck. It is clear by now that "pure neural
network” solutions are suited for some aspects of document analysis, most notably the
recognition of individual characters, but many problems are solved more effectively with
other types of algorithms. The main problem for any hardware implementation is that
= algorithms applied in document analysis are still evolving and are changing rapidly. Itis

therefore easily possible that by the time a circuit is built and integrated into a system,
newer algorithms with better performance and different compute requirements have been
developed.

In our laboratory, we had the best luck with circuits implementing basic functions, such

as convolutions, that can be used in many different algorithms. To illustrate the

*  flexibility of this approach, three applications of the NET32K circuit are described:

* Locating address blocks, cleaning document images by removing noise, and locating

areas of interest in personal checks to improve image compression. Several of the ideas

realized in this circuit that were inspired by neural nets, such as analog computation with

" a low resolution, resulted in a chip that is well suited for real-world document analysis
applications and that compares favorably with alternative, "conventional” circuits.
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From Neural-Based Object Recognition toward Microelectronic Eyes p 7

Bing J. Sheu, Ph.D. Senior Member, IEEE
Sa Hyun Bang, Ph.D. Student Member, IEEE

_ Department of Electrical Engineering, Powell Hall-604
~ University of Southern California, Los Angeles, CA 90089-0271, U.S.A.
Also with Center for Neural Engineering & the Signal and Image Processing Institute

Abstract

Engineering neural network systems are best known for their abilities to adapt to the changing
characteristics of the surrounding environment by adjusting system parameter values during the learning
“— process. Rapid advances in analog current-mode design techniques have made possible the
implementation of major neural network functions in custom VLSI chips. An electrically programmable
analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of
the synapse cells, neurons, and analog processors are presented. A synapse cell based on Gilbert
multiplier structure can perform the linear multiplication for back-propagation networks. A double
differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse
cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold
region for low-power operation. The voltage gain of the sigmoid-function neurons is externally
adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building
blocks can be intelligently connected to form useful industrial applications. Efficient data communication
is a key system-level design issue for large-scale networks. We also present analog neural processors
- based on Perceptron architecture and Hopfield network for communication applications. Biologically
inspired neural networks have played an important role towards the creation of powerful and intelligent
machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically

- inspired vision processing chips and cellular neural network chips are key design issues.
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I. Introduction

i

Rapid progresses in the research of intelligent information processing paradigms, architectures,
and electronic hardware implementations based on artificial and biologically-inspired neural net-
work models have helped to establish a rich knowledge base for practical applications. Studies
of engineering neural network models were motivated by the investigation of human perceptron.
The Von Neumann computing approach incorporates a single central processing unit and the main
memory unit. It can execute instructions sequentially with a reasonable speed and accuracy for
conventional data-processing applications. However, these digital machines, when packaged in a
small physical size, can not perform computationally-intensive tasks with satisfactory performance
in such areas as intelligent perceptron, including visionary and auditory signal processing, recog-
nitionl; I}nlc)ierstanding, and logical reasoning where human being and even living animals can do a
superb job. .

Recent advances in artificial and biological neural networks research have provided excited evi-
dence for high-performance information processing with a more efficient use of computing resources.
The secret lies in the design optimization at various levels of computing and communication. Each
neural network system consists of massively paralleled and distributed signal processors with every
processor performing very simple operations. Large computational capabilities of these systems
are derived from collectively parallel processing and efficient data routing through well-structured
interconnection networks. Two different operation modes are associated with a typical neural
information processing network: the data retrieving process and the learning process.
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II. General Properties

Many important issues need to be carefully addressed in constructing electronic neural! network
= systems:
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1. A balanced exploration on the computing algorithms and architectures which are suitable for
digital VLSI implementations and analog networks;

2. Emphasis of both artificial neural networks and biologically-inspired neural models; and
3. Solving real-world, large-scale problems.

In electronic implementation, the options are digital, analog, a combination of both, or pulsed-
stream forms. Analog approaches can be divided into continuous-time [1, 2, 3], and discrete-time
schemes [4, 5]. In continuous-time analog VLSI, some additional options arise relating to the
operation mode of transistors: weak inversion [6] and strong inversion [7]. The pulsed-stream
approach [8] is more biologically motivated than other approaches. Lyon and Mead [9] described
the VLSI implementation of an analog electronic cochlea for speech recognition. Koch et al. [10]
reported a real-time chip for computer vision and robotics. Satyanarayana et al. [11] presented
a reconfigurable analog VLSI neural chip for general-purpose applications. Hollis and Paulos [12]
proposed a current-summing neuron with binary data registers. Boser and Sackinger [13] presented
an analog neural chip for hand-written character recognition. Fang, Sheu, et al. [14] presented a
mixed-signal neural network processor chip for self-organizing networks. '

There are three basic neural network architectures: the iterative networks, the multi-layer per-
ceptron networks, and the self-organizing networks. The iterative neural networks, which are also
called recurrent neural networks, are promising for temporal pattern recognition and generation.
Recurrent neural networks can solve optimization problems because of their constraint-satisfaction
capabilities. Data is retrieved from an iterative network through associative recalling. Represen-
tative iterative networks include the Hopfield network [15] an§ bidirectional associative memory
[16]. In a multi-layer perceptron network, supervised learning [17] is used. The effective errors for
the output layer and hidden layers are calculated from the actual outputs and expected outputs.
Synapse weights are updated according to the delta rules or the derivatives. Layered neural net-
works are effective for spatial pattern recognition. The multi-layer perceptron networks are widely
used in industrial applications.

A self-organizing network consists of two layers of neurons: the input layer and the competitive
layer, which is also called the output layer [189. A winner-take-all function is performed among
the neurons in the competitive layer. The self-organizing network has the desirable property of
effectively producing spatially organized presentation of various features of the input signals [19].
Competitive learning depends on the competition among the output neural units. Self organization
is required in several image and vision processing applications such as pattern recognition, vector
quantization for image compression, and motion estimation. In addition, it may be applied in the
selection of optimal inference paths in symbolic computers. Such an application can systematically
reduce the knowledge inference operation from an NP complete problem to a much simplified
problem in a very efficient way.

III. Analog Building Blocks

Power consumption, required silicon area, and the number of packaged pins are also important
figures of merit in practical hardware implementation. The required silicon area for a given function
will be gradually decreased with the advances of microelectronic fabrication technologies. Therefore,
the number of packaged pins for information communication could become a fundamental limitation
for information exchange. Each package pin can be shared by several functional outputs through
time-multiplexing scheme or frequency-multiplexing scheme.

A. Memory in Synapse Cells

An important component in hardware implementation of learning is memory. In analog
neural network processor chips, synapse weight information can be stored in various formats.
In the early design, fixed-resistance synapses were implemented with the well regions or
an amorphous-silicon layer. Complementary-MOS transmission gates were also proposed
to achieve programmable synapse resistance. Continuous-time synthesized resistance [20] is
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made of four MOS transistors which are connected in a cross-coupled fashion. The threshold
voltage mismatch effect is minimized by using symmetric control voltage.

A basic transconductance amplifier which is made of five MOS transistors requires a simple
control signal for the programmable synapses E8] Such a compact and programmable synapse
provides the first- and third-quadrant multiplication capability. The synapse weight can be
stored on the gate capacitance and refreshed periodically. A modified wide-range Gilbert
multiplier is suitable for general-purpose programmable synaptic operation because it provides
four-quadrant multiplication capability [21]. Long-term memory information can be stored in
the floating-gate devices fabricated by a special EEPROM technology [22] or by a conventional
double-polysilicon technology for analog circuits for over 20 years in room temperature [23].

B. Neurons

The summed synaptic current is converted to the voltage through a current-to-voltage con-
verter. The feedback resistance of the converter can be implemented with six MOS transis-
tors. The voltage gain of the neurons can be controlled continuously to perform the hardware
annealing operation [24, 25] for the quick searching of optimal solutions in nonlinear opti-
mization applications. Such a hardware implementation of mean-field annealing can be used
in recurrent neural networks and multi-layered perceptron networks to avoid local minima
problems.

C. Winner-Take-All Circuit

A high-precision VLSI winner-take-all circuit can achieve high-speed operation by biasing
transistors in the strong-inversion region. It uses the cascade configuration to significantly
increase the competition resolution and maintain a high speed operation for a large-scale
network. The total bias current increases in proportion to the number of circuit cells so that
a nearly constant response time is achieved. In addition, a unique dynamic current steering
method is used to ensure only a single winner exists in the final output. Experimental results
of the prototype chip fabricated by a 2-um CMOS technology show that a cell can be a winner
if its input is larger than those of the other cells by 15 mV. The measured response time
is around 50 nsec at a 1-pF load capacitance. This analog winner-take-all circuit is a key
module in the competitive layer of self-organization neural networks.

D. Radial-Basis Function Circuit

The circuit schematic diagram and transistor sizes for a Gaussian function synapse cell is
shown [26]. This circuit consists of MOS differential pair and several arithmetic computational
units in the current-mode configuration. Transistors with non-minimum channel lengths are
used to avoid the channel-length modulation effect. The input voltage is applied to the gate
terminal of one transistor in the differential pair and the synapse weight value is stored on
the capacitance at the gate terminal of the other transistor. Measured results of the Gaussian
synapse cell are shown.

IV. Design Methodology

Mixed-signal VLSI implementation is suitable for novel signal processing applications such as
image restoration 545] and optical flow computing [46]. The mixed analog-digital circuit design
techniques are used to take advantages of efficient numerical computation in analog domain with
long-distance communication in digital data bus. The multiplexed scheme can also be used to
transmit signals over a long distance in an electronic system. Additional system-level integration
results can be found in [47].

Hybrid approach using combined analog dynamics and digital logic represents very powerful
and appealing design. For example, the programmable CNNs provide a new quality of artificial
neural networks through a kind of analog software, a simple way to solve CNN algorithms. In our
design, we give the network instructions and templates information just like we had done with the
general-purpose CPU. The whole system will work like a SIMD machine and each local cell will
execute the given commands to accomplish the functions we want. There are two distinct portions

31



but they both use the analog and digital circuits. One part is consisted of global digital control
circuits and global analog memory; the other one has one duplications in each local cell which
contains small local control circuits and local analog and digital memory. A timing diagram of the
global digital circuit is shown in figure 8.

One other novel way to implement the neural network is a hybrid neurocomputer that utilized
electro-optic components for the input processing and analog electronics for implementation of
the remainder of the transfer function. This type of neurocomputer was shown to be capable of
successfully implementing simple Hopfield neural networks with weight values restricted to the set
{-1, 0, +1}. B. Soffer et. al also developed a first all-optical neurocomputer [27].

V. Cellular Neural Network

1. General

A cellular neural network (CNN) is a continuous-time or discrete-time artificial neural network
that features a multi-dimensional array of neuron cells and local interconnections among the
cells. The basic CNN proposed by Chua and Yang [28, 29] in 1988 is a continuous-time network
in the form of an n-by-m rectangular-grid array where n and m are the numbers of rows and
columns, respectively. However, the geometry of the array needs not to be rectangular and
can be such shapes as triangle or hexagon [30?. A multiple of arrays can be cascaded with an
appropriate interconnect structure to construct a multi-layered CNN. Structural variations of
the continuous-time, shift-invariant, rectangular-grided network include discrete-time CNN
[31], CNN with nonlinear and delay-type templates [32], etc. CNN and its variations provide
a natura) and universal model of analog processor arrays on a geometrical grid. Their local
connectivity and regular structure appear most efficient for electronic implementation for
high-speed, real-time applications. Several hardware implementations of the CNN have been
reported in the literatures [33]-[39].

2. Hardware Annealing

The hardware-based annealing technique [25], has an analogy to the metallurgical annealing
in the metallurgy and simulated annealing in the Boltzmann machine, which are the optimal
stochastic procedures. It is a paralleled, electronic version of the deterministic mean-field
learning rule [42, 43] directly incorporated with the Hopfield neural network or CNN. It is
a dynamic relaxation process for finding the optimum solutions in the recurrent associative
neural networks such as Hopfield network and CNN. Even with a correct mapping of the
cost function onto a neural network, the desired combinatorial solution is not guaranteed
because a concave optimization problem always involves a large number of local minima. True
combinatorial solutions can be achieved by applying the hardware-based annealing technique
with which the global minimum of E is found in 2 real-time speed.

3. Applications

The CNN’s can be used in many computation-intensive, adaptive signal processing applica-
tions. Due to its two-dimensional array architecture, CNN’s are suitable for real-time image
processing applications in the following areas [30].

(a) Image processing: Feature extraction, motion detection & estimation, path tracking,
collision avoidance, and mage halftoning,

(b) 3-D surface analysis: Min/max detection and gradient estimation,

(c) Solving partial differential equations,

(d) Non-visual data imaging: Thermographic images, antenna array images, and medical
maps and images. )

A CNN has similar collective computational behaviors with Hopfield neural networks. Thus,
the quadratic nature of the Lyapnov function allows us to map it into optimization problems
[41, 43].
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VI. Conclusion

There is a strong need to develop new neural network architectures and design techniques to
extend the size of electronic implementation to a larger scale for solving real-world problems in
science, engineering, and business. Extension of the hardware annealing to large-scale networks
for complex problems is highly desirable. Chip-level and system-level packaging technologies will
be crucial for future computing machines with one-million-unit neural networks on silicon wafers
that interact with the external environment and change the structures adaptively. Reusable soft-
ware modules and hardware modules are to be invented. For large scientific problems, neural
networks with 10 tera connection updates per second will be needed. A flexible framework for
representing various kinds of information efficiently and effectively will be the key for successful
hardware/software co-designed systems.
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VLSI Neuroprocessors

Sabrina Kemeny
Center for Space Microelectronics Technology
Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109

Abstract

Electronic and optoelectronic hardware implementations of highly parallel computing
architectures address several ill-defined and/or computation-intensive problems not easily
solved by conventional computing techniques. The concurrent processing architectures
developed are derived from a variety of advanced computing paradigms including neural
network models, fuzzy logic, and cellular automata. Hardware implementation
technologies range from state-of-the-art digital/analog custom-VLSI to advanced
optoelectronic devices such as computer-generated holograms and e-beam fabricated
Dammann gratings. JPL's Concurrent Processing Devices Group has developed a broad
technology base in hardware implementable parallel algorithms, low-power and high-
speed VLSI designs and building block VLSI chips, leading to application-specific high-
performance embeddable processors. Application areas include high throughput map-
data classification using feedforward neural networks, terrain based tactical movement
planner using cellular automata, resource optimization (weapon-target assignment) using
a multidimensional feedback network with lateral inhibition, and classification of rocks
using an inner-product scheme on Thematic Mapper data. In addition to addressing
specific functional needs of DoD and NASA, the JPL-developed concurrent processing
device technology is also being customized for a variety of commercial applications (in
collaboration with industrial partners), and is being transferred to U.S. industries.

This talk will focus on two application-specific processors which solve the computation
intensive tasks of resource allocation (weapon-target assignment) and terrain based
tactical movement planning using two extremely different topologies. Resource
allocation is implemented as an asynchronous analog competitive assignment architecture
inspired by the Hopfield network. Hardware realization leads to a two to four order of
magnitude speed-up over conventional techniques and enables multiple assignments,
(many to many), not achievable with standard statistical approaches. Tactical movement
planning- (finding the best path from A to B) is accomplished with a digital two-
dimensional concurrent processor array. By exploiting the natural parallel decomposition
of the problem in silicon, a four order of magnitude speed-up over optimized software
approaches has been demonstrated.

39
(XK I8 S TTNTIOHAL LY GLANK

PRECEDING PAGE BLANK NOT FILMED . BAE e



| B | P mm ! Hme Ui O I m m M ' !» e i Uy e

VSVN PUE ‘dNO ‘OaNg ‘OMSN ‘VddY ‘@0 weibold SYSY
:Aq paiosuodg Apuiop

suiay| Bno(Q
UOUulN pe.g
|24y J1eiN
WwNSSs04 ol
MeYS Wil
UOXIN Haqoy

40

ns| U9J9H
opuedue||iA SOlBD
ipieyiaqy OIS
uel] enp
Buonq ueny
layoequabue] AleH
umoig wil
pneq 1eye]
100%EeY] |lUY

sjuswbpajmouyoy

1 INEIEL . R



(B13qz310xy *I) "szomndsuen; yim uonisodwodap-eyep
pary Sutsn suonenduod JySis Jo aury :5OTe

(81997310 * 1) sAexre sayndsuen yyim Suissooord Jusrmouod Bursn
urelis; patreA 1240 yied rewndo spuyy
SISA[eUY JUSWIAON [BOHOB]. *WVIA Le

suonjedrddy Jurssadoi] yusrmouon)

(131N "N) "ying punoid pue syI0M3au [esnau pauren
"e3ep SRIIAV duloqire fexydadsiad Ay woxy sadAy-puey 3 sarnyeay
SpeW-UeW 109)9p pue ojur asn-punoid aredaije

uonedIsse[) [e130adsnmiN 29 s}ON [eINaN

(191N 'N)
"S$YI0MIau [eansu paures; ursn eiep NOY-AD 2 sdewr zaded

pauueds ATeiSip jo no-oze ‘seary ueqin ‘SIOATY ‘Speoy JPeLXHe
uoneredag dej 29 sjoN [einaN

dnor suoneorddy srdergoirey 1] 93 JO S}IOITY

dnoiny suonyesrddy dryderdoyre)-syiomjaN [eInaN Jnﬂ

S b D Uy D wmm ommyonmmo omony oo

41



B ]

ST D B

B @ B mm M ym I® '®» B I® e me I

Ansnpu| pue ‘YSO4V ‘OASS/VSN 1dSO
‘OMVN ‘“OMSN ‘HNO ‘AM3I/WO003D ‘VdHY ‘1LSIVOAINg 'VSVN
:Ag pelosuodg siea) g i1Sed 8y} 1on0 Juswdojoreq o

BuiobuQ Ansnpuj "S'n o1 Jejsues] ABojouyos] -

uoissaidwo)) abewy « 158 | |ejuswiuoliaug aoeds «

Buluue|d yred » 101des.ajuj Joj Jajjonuo)) aAndepy «

UOIROO||YY 80IN0SaY sisAjeue olydesbope) .
s0)| oyloeds uoneoijddy sdiy) yoolg Buip|ing esodind jessuen) 8jqixo|4

<

spJen) 10Ss8004doinap Ojul peppaquil
aq Ueod 1ey} SO ISTA Woisny jo suonejuswa|dulj srempieH —

S|elaeW 011)08]80418) pUe ‘Sap|X0 8)IsodWwod ‘s10}oNPUodILISS snoydiowe
saolne(] Aowsyy pue Bunndwo) |9AON UO ydoseasay —
Sa.N}o8lIydlY |ojjeied JO SUOlBNWIS JINOJID0INSN —

sainoeyoly Bunndwo) pasdsul-yiomieN [einsN ‘|sjjered
AubBiH J0 suonejuswajdw| asempie 21uoJ08]80idO pue Oluol8|3 .

42

dnoiy sadinag Buissasoid Jualinduo)d

1dr

me el BB 11



‘SANOINHOIL TYNOIINIANOD Ad erms.-QEOQOe\ ATISY3 LON JHY
HOIHM ‘3avn 34v SINIFWNOISSY (ANVW *OL = ANVI) F1dILINN AYVHLIGHY »

'SINDINHIIL BNILNWOD TYNOILNIANOD HIAO ANIWIONVHNIT d33dS
JANLINOVI 40 SHIAHO v HIAO SHIHH0 HOYOHddY YNISSIIOHIOHNAN »

| ONINNY1d-TH NOISSIW
z:_\,__rm_.mw_ _.qwm_.._%%  INILYAY ‘FNIL-TVIY .
INFWHOVNYW 13SSY
oL VM HOV ASNOHILYM ONIG3HOS / DNIONINDIS +
NDISSY ONIOVHL LIOUVIALINWN
. BNIONVIVE avol
HANNSNOD ONIIV NOJVIM-LIOHYL
. ONILNOY FOVSSIW o
SHINNSNOD 6 o/ INSWNDISSY JINVNAQ o
ANV SISNOHIHYM € o\\\ NOILVOOTIV 33HNOS3Y o

SW3TH0Hd INFWNDISSY JIWVNAG OL SNOLLNTOS
433dS HYIH H0d HOSSIDOHJOHNIN V 40 NOILVYINIWTTdNT

JHYMaHVY 4 LdIONOD n UMVIHE MIN V QIdOTIATA -

LNIWIDYNVIN LISSY / NOILYDOTIV I9HNOSIY

SHOSSIO0HJOHNIAN JINOHLIOTTT Jﬂ-—.!

S Yoo DO IDOND Ity oumooomoTEy oy IED

Cr
o N

]

43



(| B B m m e e N ue s e e e e N ne i

“aaos | |, o] [y oo |y | [y, Lo
i | S
= A <0 lo<tio] (<o) (<o«
i A«AW_.@M A«AM@. .«A_M@l A«A_“LA@I «H
A [0 (<0 (<o) <ol <o -
A o <0l l«<30] l<tol « 5

A A A A H

S H 3 W N S N O DO

2INPINPPIY D J055320.1d0ININ JUAWISRUR]A] 19SSV Tclr



SANOJISOHIIW 0 LNOAY |
NI LNJWNDISSY SISINOHd
JUVMAHVH 40 NOLLYINWIS

INJWNDISSY |
(1-01-8) SNOdVam 0z
OL1 S139DHVL 09 V

\ SINIWNDISSY >Z<s_..0._..>z<s_)
S3TEVN3 LI IWIL 1SHI4 IHL HO4 @

SNOLLYNIGWOD 318ISSOd g1 01

H3AO0 4O V101 v 40 LNO NOILLNTOS

«d00Y.. V STAID SNOHNIAN HOTVYNY
0091 HLIM dIHO LNIWNDISSY O0vX0P V @

JANLINOVIN
40 SH3IQHO OML A 3aND-HIdAH

3AON-8 NV 40 LVHL SISSVYJHNS
(G33dS ONISS3IO0HdOHNAN e

S3JUNOSIH 40 LINIWNDISSY JINVNAQ

SWHOJH3d JHYMAHYH 13N TYHNaN GHVD HOSSIO0HdOHNAN NI-DN1d
\_#0 3UNLOILHOUY 13 TIVHVd ATINd ® )

ININNDISSY 13DHVI-NOdVYIM Yr
d04 HO0SS300HdOHNAN

STy mocmy T nmoomm o)

I — DRI Wi T |

45



m I F " I e » N oum Ip i I i EEI A B

NOILLVYOIAVN
IZVIN/ONILNOY JHIM @4vO0o4 LindHIO @

NOLLVOIAVN JTOIHIA SNOWONOLNY @

(AYvLinw
ANV NVITIAID) ODNIHOLYdSIA ADNIDHINT @

SWHO4LV1d 1HOIN4d HO4
ON{LNOYH-3H 3LNOH NI ANV ONINNV1d
31NOY INIL Tv3H ‘ONINNV1d NOISSIN e

SOIHVNIOS d13i437111ve
HO4 SISATYNY ALITIGON TVIILOVL e
3SN3430 e

46

SV3HV NOILVYOI'lddV

(sw) ATMOIND NIVHHIL XI1dINOD SSOHIV HLVd
(‘013 ‘NOILIHLLY “13N4d ‘IWIL ONIZINININ) 1SOD 1SvY31aNId OL :JAILD3Irdo

ONINNV1d HLVd Acllr

oo M mumEr t IR R0, 11 TN



D N T TR PO e

.......................

.........................

P .
WAz grerprertrRrERIRILIRILIEIR IR IRILIRIRIRIY
R R R R R A R N A A A AL A LA LA H

RS H AN ST SPELRE BAA) BAd 4

g

lapodaqg uwnjo)

.......................

........................ i
..................... “
..................... H G5 11”0 o 1180 |
..................... 3 Hun Hun Hun A
........... : M i i 'y 9
............. m « H H P
.............. “ o
.................. H 189 120 130 0
.................... H - - - ]
.......................... H ! wun nun nun
a a
........... m
................. 3
3 ‘ Y Y M
.............. 3 o
........... i -] IR - 119D » 30 |«—| H
................ § nun wun Hun
............. ' *
| | “ .
............ :

|

!

|

...............

S I B |

SANODISITTIW NI HLYd 1S0D 1SVY31
JH1 ININHI130 ANV NIVHHIL NIAID ¥V T3a0N 01 AININVHHOHd
AVHHY HOSS300Hd 13 71vHVd NIVHD 3NI4 V 40 NOILVHDIINIISTA :NOILNT0S

H1lvd 1S0J 1SY3131NdNOD
OL S3LNNIN OL SANOIIS FHINDIY STHOVOHdAY FHVYMLA0S LNFHHND :

HOVOUHddY ONINNV1d HLVd

W31804Hd

dr

47



AFTER 1250 CLOCK CYCLES

AFTER 750 CLOCK CVCLES .
© , @

Signal propagation through array shown in white on map background (black indicates road): a) after 450
clock cycles, b) after 500 clock cycles, c) after 750 clock cycles, and d) after 1250 clock cycles.
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Photonics: From Target Recognition to Lesion Detection
Martin Marietta Corporation and Rose Health Care Systems
by  Dr. E. Michael Henry, (303)977-7720

Martin Marietta Astronautics, MS FO330

P.O. Box 179, Denver, Colorado, 80201
 Introduction -- Since 1989, Martin Marietta has invested in the development of an innovative
concept for robust real-time pattern recognition for any two-dimensional sensor. This concept
has been tested in simulation, and in laboratory and field hardware for a number of DoD and

commercial uses from automatic target recognition to manufacturing inspection. We have now

" joined Rose Health Care Systems in developing its use for medical diagnostics.

The Concept -- The concept is based on determining regions of interest by using optical Fourier
bandpassing as a scene segmentation technique, enhancing those regions using wavelet filters,
passing the enhanced regions to a neural network for analysis and initial pattern identification,
and following this initial identification with confirmation by optical correlation. The optical
scene segmentation and pattern confirmation are performed by the same optical module. The
neural network is a recursive error minimization network with a small number of connections

and nodes that rapidly converges to a global minimum.

A Specific National Need -- The specific commercial application for which this Defense
technology is proposed is a medical diagnostics demonstration in analyzing screening
mammograms. Breast cancer is an ever-increasing problem that is striking women at younger
and younger ages. Recent statistics indicate that one in eight women will experience breast
cancer in their lifetimes--an increase from one in twelve a few years ago. One of the most
effective tools in the fight against breast cancer is early detection through the use of
mammography. In 1990, 17 million screening mammogram sets were generated. Based on
National Cancer Institute and American Cancer Society recommendations, 44 million sets should
have been processed. While there are several barriers to greater mammography participation,
one barrier is cost. Radiologist reading fees alone for screening mammograms amounted to $652
million in 1990 and are expected to grow to $1 billion by 1996. Statistics also show that early

detection of breast cancer not only saves lives, but significantly reduces the cost of the ensuing
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Photonics: From Target Recognition to Lesion Detection
by Dr. E. Michael Henry

treatment as well. Our goal is to reduce screening mammogram fees to increase participation, to
aid radiologists in finding a higher percentage of cancerous lesions, and to detect these lesions at

least a year earlier than is generally possible with current techniques.

The On-going Effort -- Martin Marietta and Rose Health Care Systems are conducting
demonstrations of the concept for mammogram processing. These demonstrations use an optical
processor simulator to detect and identify spiculated lesions -- one of three types of potentially
cancerous lesions commonly detectable in the human breast, and will be extended to detect the
other lesions as well. The effort will then conduct a full proof of concept through simulation and
hybrid digital/optical hardware for all three lesion types, prepare a system operational concept,
develop a total system prototype for evaluation tests, and prepare for FDA clinical trials and
manufacturing readiness. The Martin Marietta/Rose mammogram analysis system has the
potential to significantly reduce total mammography costs, while improving the quality of care
by ultimately functioning as a radiologist's aid as well as an automatic prescreener or a "second
opinion" system. Mammography is only the first of a number of applications to medical
diagnostics for which this technology could be key. We expect to expand its use to the analysis

of chest imagery, pap smears and other similar image and cytological diagnostics.

The Team -- The team is composed of Martin Marietta Photonic Systems as system developer
and team administrator and Rose Health Care Systems as partner and key medical advisor on
radiology and operational concepts. Optics and neural network experts from the University of
Colorado, the University of Dayton Research Institute, and Tactical Technical Solutions, Inc., are
providing technical support in pattern processing. Two nationally-known radiologists provide
additional expertise in mammogram analysis tccliﬁiques, and the Eastern Cooperative Oncology
Group, a group of over 3000 cancer research professionals, provides guidance on this and other
diagnostic areas for which these techniques apply. Several local suppliers provide assistance in
the human-machine interface for medical diagnostic workstations, in clinical evaluation

requirements and techniques, and in system packaging.
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3D Artificial Neural Network (3DANN) Technology
A Status Report and Blueprint For The Future

Irvine Sensors Corporation (ISC), working closely with JPL under
BMDO/ONR sponsorship, is developing a radically new neural computing
technology. Primarily aimed at discrimination and target recognition for BMDO
missile interceptor applications, it appears to have near term commerecial
applicability to such problems as handwriting and face recognition, just to name
two. In its earliest form it will be able to perform inner product computation using
262 thousand 64x64 templates (weighted synapse arrays) where the 64 weights can
all be changed every milli-second. Internal switching provides an inherent
capability to zoom,. translate, or rotate the templates. The 3D silicon architecture is
manufactured on a commercial, high volume DRAM production line at very low
cost, enabling its commercialization. Two technology thrusts are beginning: In the
first, the 64 layer capability of 3DANN-I will be extended to 1024 layers and beyond.
In the second layer size will be shrunk to 2-3 millimeters to reduce layer costs to-
under fifty cents.

Our workshop goal is to expose this technology to the neural network
community as an emerging tool for their use and to obtain their desirement for its
future development.
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34m Antenna Elevation Pointing System

estimated antenna rate

Tachometer Loop Am Iiﬁe?l_,ll/lotor H Gearbox l
Commanded Compensation P 0o
Position
rate
Antenna mm L
Sewo |oommand Reconstruction Torque Share | 10que bias signal Antenna
Controller Filter Circuitry Structure
Tachometer Loop Amplifier Motor Gearbox
Compensation
estimé}ed antenna rate
estimated antenna position
Measured Observables
— \

On-line System Modelling
and Parameter Estimation

(ARX model plus variance estimates)

> Predicted Target

Ouwmput

Error Signal

Parameter Estimation Model

Estimated
Parameters

&)

Symptom->Class Probability Mapping

{Neural Network)

Parameter/State Probability Model

Instantaneous

Probabiliy State P(Q=wjl§(t))
Estimates
- P(Q=wji®t.T) P(2=0jldy) P(Q=wjlPy,T)
State State State
Hidden Markov L Probabilty _,, Hidden Markov Dabif Hidden Markov L Probability g,
Model Calculations Estimates Model Calculations Estimates Model Calculations Estimates
atTime t-T atTimet atTime t+T

Time Correlation Model
for State Dependence

v

System Decision at time t
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SUMMARY OF EXPERIMENTAL RESULTS OBTAINED AT DSS-13 34M ANTENNA
IN REAL-TIME UNDER NORMAL AND FAULT CONDITIONS

Without Markov model | With Markov model
Class Gaussian Neural Gaussian | Neural
Normal Conditions 0.36 1.72 0.36 0.00
Tachometer Failure 27.78 0.00 2.38 0.00
Compensation Loss 3421 |  0.00 43.16 0.00
All Classes 16.92 0.84 14.42 0.00

Percentage misclassification rates for Gaussian and neural models
both with and without Markov component.

Without Markov model | With Markov model
Class (Gaussian Neural Gaussian | Neural
Normal Conditions -2.44 -1.97 -2.46 -4.24
Tachometer Failure -0.40 -3.52 -0.42 -4.22
Compensation Loss -0.82 -3.48 -1.39 -4.71
All Classes -0.87 -2.29 -1.02 -4.34

Logarithm of Mean Squared Error for Gaussian and neural models
both with and without Markov component (more negative is better).
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With hidden Markov model
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Innovation and Application of ANN in Europe demonstrated by F 3
Kohonen Maps -

Karl Goser
University of Dortmund
Faculty of Electrical Engineering
D 44221 Dortmund
Fax: x 49 231 755 4450
emall: goser@Iuzi.e-technik.uni-dortmund.de

Extended Summary

One of the most important contributions to neural networks comes from Kohonen,
Helsinkl/Espoo, Finland, who had the idea of self-organizing maps in 1981. He
verified his idea by an algorithm of which many applications make use up to now.
The impetus for this idea came from biology, a field where the Europeans have
always been very active at several research laboratories. The challenge was to
model the self-organization found in the brain. Today one goal is the development of
more sophisticated neurons which model the biological neurons more exactly. They
should come to a better performance of nsural nets with only few complex neurons
instead of many simple ones.

A lot of application concepts arised from this idea: Kohonen himseif appiled It to
speech recognition together with a japanese company, but the project did not
overcome much more than the recognition of the numerals one to ten at that time. In
the last years he is generating artificial music via self-organizing maps. A more
promising application for self-crganizing maps is process conitrol and process
monitoring. in this field Goser, Dortmund, made several proposals which concemn
parameter classification of semiconductor technologies, design of integrated circuits,

-and control of chemical processes. His graduates as Speckmann at Tuebingen

broadened the field of applications. Ritter applied self-crganizing maps to robotics.
Germond, MANTRA center at Lausanne, introduced the neural concept into electric

power systems.

At Dortmund we are working on a system which has to monitor the quality and the
reliability of gears and electrical motors in equipments installed in coal mines. The
results are promising and the probabliity to apply the system in the field is very high.
A special feature of the system is that linguistic rules which are embedded in a fuzzy
controller analyze the data of the self-organizihg map in regard to life expectation of
the gears. It seems that the fuzzy technique will introduce the technology of neural
networks in a tandem mode. These technologies together with the genetic algorithms
start to form the attractive field of computational intelligence. - Von Seelen, Bochum,
develops a system with self-organizing maps that can menitor breaks and plugs In
cars on this basis, too. Rueckert, Hamburg, and Ultsch, Marburg, try to combine the
self-organizing map with an expert system instead of a fuzzy network, so that the
total system exploits the advantages of both implicit and explicit rules.
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Several research teams try to improve the thecry of self-organizing maps, e.g.
Cotrell, Paris, published important facts about the consistency of self-organisation,

Tryba and Kanstein, Dortmund, are developing a new algorithm which bases on
differential equations. Herault and Demartines, Grenoble, developed the vector
quantization from the seif-organizing concept. The vector quantization shows
impressive resuits at the prediction of catastrophic failures. They also Invented the
interesting concept of separation of sources by simple neural networks which may
find applications in hearing aids and noisy machineries.

A further effort aims to an implementation in hardware: Ramacher at Siemens,
Munich, presenled the Neural Computer Synapse which has a high flexibllity and a
remarkable high performance in regard to 108 CUPS (Connection Updates Per
Second). Siemens AG is introducing Synapse I into the markst now. - There are
some activities about neural ASICs: Rueping, Dortmund, is representing the
interasting concept BISOM in digital technique at which a simplified and adapted
algorithm reduces the number of required transistors. Vittoz, Neuchatel, worked out
an analog circult for seif-organizing maps which can be used in mobile and portable
systems. Del Corso, Turino and Murray, Edinburgh, show that the pulse modulation
techniques have decisive advantages for integration in analog technique.

The work on selforganizing maps is supported by national governments and by the
European Union, as in the ESPRIT project NERVES, PYGMALION, GALATHEA,
ANNIE, NEUFODI, CONNY, ELENA-NERVES Ii etc. The support includes small
companies, too, most of which are in High-Tsec centers from which a pensetration of
the new technology into the established industries should occur.

At the moment there are a lot of conferences in Europe in this field: ICANN,
NeuroNimes, MicroNeuro, IWANN, ESANN, and several local workshops. Some
conferencas are strongly bound to roman and other to anglo-saxon regions. The
high number of conferences does absolutely not relate to the number of industrial
applications which are quite poor up to now. One reason for so many conferences
comes from the role of universities which is far from industrial challenge: the
promotion at universities needs papers which can be produced in the most easiest
way on an innovative field and on conferances which need participants.

in conclusion we have to say that the industrial situation on the field of artificial
neural networks is poor and difficult in Europe. One reason Is that there are no or
only little activities in the field of classical data processing In Europe. The strategy of
many politicians is, however, that Europe gains a better position in a new technoiogy
as neurcinformatics, since in classical fields there are barely no chances for

newcomers. There are a lot of soft applications of neural nets especially developed

at application oriented laboratories as FhG (Seitzer, Hosticka), SICAN (Weinert) and
IMS (Hoefflinger) in Germany. At the moment they concentrate their work on the
electronic eye and on automotive applications. The academic work far from real
sconomic pressure is overwheiming. We can only hope that the gap between
academic and industrial world in Europe will diminish in future and the activity will
grow on the industrial side, especially for our own interast to become more
successfully in the important economical sector of information technologies.
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i NEURAL NETWORK CLASSIFICATION OF CLINICAL NEUROPHYSIOLOGICAL
- DATA FOR ACUTE CARE MONITORING

JOSEPH SGRO

— Alacron, Inc., 71 Spit Brook Rd., Nashua, NH 03060 and The Neurological Institute of New York, 710 West
= 168 Street, New York, NY 10032

INTRODUCTION

The purpose of neurophysiological monitoring of the "acute care” patient is to allow the accurate
recognition of changing or deteriorating neurological function as close to the moment of occurrence
as possible, thus permitting immediate intervention.

<

[

EEG MONITORING

The electroencephalogram is a sensitive indicator of cerebral ischemia. Slowing of the EEG in man

{

occurs when regional cerebral blood flow drops to 16-22 ml/100g/min., and severe voltage
- attenuation resuits if flow is further reduced to 11-19 ml/100g/min. (Trojaborg & Boysen 1973).
= This observation has lead to the use of EEG monitoring in clinical settings in which cerebral
- perfusion is at risk. The utility of EEG monitoring during carotid endarterectomy has been

demonstrated (Chiappa and Burke, 1979; Myers et al, 1980), and it is routinely used in some major
= centers to determine the necessity of shunting. During cardiopulmonary bypass for cardiac surgery,
N the EEG also has been shown to be a sensitive indicator of the effects of hypotension as well as air
) embolism (Prior, 1979; Stockard et al, 1964). The Practice Committee of the American Academy of
.- Neurology has advised that "EEG monitoring during complex surgical procedures has become an
L= established procedure to safeguard cerebral perfusion” (Pedley and Emerson, 1984).
R =4

Recently, a number of EEG monitoring system have been proposed. These are either primarily
displays of data reduced EEG, processed by FFTs (Fast Fourier Transforms) or AR (Autoregressive),
or heuristic rule based detectors for specific patterns derived from processed or raw EEG.

In our view, the limitations of automated EEG analysis systems heretofore developed are
consequences of either the use of data reduction, which obscures morphological characteristics of
EEG waveforms critical for their identification, or the reliance on rule based systems which are
limited by their design to detect a limited repertoire of EEG patterns and may have excessive false
classification rates.

{ Gl

§ For an EEG monitoring machine to be clinically acceptable for use in ICU or operating room

- environments, the following four requirement should be satisfied:

*fg’ 1. It must detect artifacts to avoid false interpretation of EEG waveforms.

§_ 2. It must be able to identify unambiguously designated patterns and changes in patterns in
the EEG.

- 3. It must have provision for multiple monitoring channels.

= 4. It must be able to perform these functions in real-time.

- - EVOKED POTENTIAL MONITORING

el Evoked potentials (EPs) are electrophysiologic markers of transmission of sensory signals through

= afferent neural pathways in the central nervous system following auditory, visual, and

- somatosensory stimulation. They are widely used in clinical neurology for detection and localization

~ of neural lesions (Chiappa, 1990). Brainstem auditory evoked potentials (BAEPs} and somatosensory
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evoked potentials (SEPs) are relatively resistant to anesthetic agents and levels of patient arousal,
and are therefore ideally suited to monitoring the integrity of the central nervous system of patients
in "acute care" settings. The purpose of evoked potential monitoring of the "acute care” patient is
to allow the accurate recognition of changing or deteriorating neurological function as close to the
moment of occurrence as possible, thus permitting immediate intervention.

BAEPs are widely used to monitor acoustic nerve function during surgery in the cerebellopontine
angle (CPA), primarily for resection of acoustic neuromas and other CPA tumors, where the surgery
threatens auditory nerve function. They are sensitive to mechanical disruption of the auditory
nerve, as well as cochlear and eighth nerve ischemia. Intraoperative BAEP monitoring has been
recently demonstrated to be associated with significantly decreased postoperative morbidity (Radtke
and Erwin, 1988). BAEPs are also sensitive to disruption of and ischemic insult to structures within
the brainstem auditory pathways, and hence are employed during other procedures that risk
brainstem injury, including surgery for basilar artery aneurysms, posterior fossa arterio-venous
malformations, and intrinsic brainstem tumors (Friedman and Grundy, 1987; Radtke and Erwin,
1988; Abramson et. al. 1985).

SEPs are sensitive to parenchymal damage directly involving the posterior columns, as well as
compression, mechanical distraction, and cord ischemia. SEP monitoring during scoliosis surgery
has become widely accepted, and has virtually replaced the "wake-up” test. SEP monitoring is also
employed to monitor the integrity of the spinal cord during cross clamping of the aorta, and
neurosurgical procedures involving the spinal cord and its blood supply (Friedman and Grundy,
1987; Loughnan and Hall, 1989; Emerson and Pedley, 1988). Additionally, cortical components of
the SEP can be used to assess integrity of the cerebral cortex during procedures requiring temporary
occlusion of cerebral arteries (Buchtal and Belopavlovic, 1988).

in order to achieve widespread use and utility, an automated EP monitoring system should have:

1. The ability to detect artifacts to avoid false interpretation of EP waveforms.

2. The ability to unambiguously identify designated EP waveforms.

3. The ability to measure the amplitudes and latencies of designated EP waveforms.

4. The capability of monitoring multiple EP channels in real time.
The Table below lists the major technigues that have been used for automated EP analysis. To
date, none of these is in widespread use. This reflects, in large part, their collective sensitivity to

artifacts and noise and their inconsistent ability to correctly track the waveform of interest , its
amplitude, or latency.

Methods Disadvantages Reference
Discriminant methods Requires a priori definition of Clarson Liang (1989)
features
Template methods Requires a priori template Childers et al (1987)
definition
Derivative methods Extremely noise sensitive Miskiel and Ozdamar {1987)
Rule based methods Very sensitive to morphology Boston {(1989)
variations
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NEURAL NETWORKS

INTRODUCTION

PDP networks, also known as neural networks, have recently attracted widespread interest and
application in diverse areas of computerized pattern recognition, including handwriting, voice and
visual pattern recognition systems (Levinson et. al, 1983; Devijer and Kittler, 1982; Blake and
Zimmerman, 1987; Lang and Waibel, 1990; Rajavelu et. al., 1989; Buhmann et. al., 1989). Neural
networks are structured as arrays of interconnected units which have the capability of "learning™ by
examples causing functional modification of interconnections. The units have functional properties
modeled after neurons, and interconnections modeled after synapses.

An important feature of neural networks is that it is not necessary to precisely describe the patterns
to be recognized. Rather, the network is "trained™ by presenting it with examples of patterns to be
recognized. While an expert recognition system may be intuitive, or difficult to articulate, the
training mechanism only requires examples of classified data (output patterns). In contrast to most
other methods, the structure of neural networks allows training to take place in the absence of a
specific heuristic method for each feature to be recognized.

The major advantage of neural networks is that they are able generalize, and adapt to distortion or
noise without losing their robustness. Neural networks are capable of correctly identifying input
patterns that are morphologically similar to but not identical to the patterns on which they were
trained. The latter feature makes neural networks ideally suited to EEG and EP analysis which
requires correct identification of selected neurally generated signals based upon waveform
morphology, and often in the presence of considerable accompanying noise. Neural networks thus
have the advantage of allowing an efficient unified system for detection and identification of
artifacts, abnormalities, and, EP's waveform latency in the presence of noise. Our results below
demonstrate the feasibility of the use of neural networks for EEG/EP analysis.

IMPLEMENTATION

A. NETWORK ARCHITECTURE

We initially implemented a fully interconnected feed forward net with a selectable number of layers
and nodes. We used three and four layer networks (i.e. one and two hidden layers) for both EEG
and EP analysis. All data processing was performed on AT compatible computer with an Alacron
ALB60 coprocessor board. The AL860 board uses a 40 MHz Intel i860 RISC processor (80
MFLOPS) and provides 64 MB of memory.

OUTPUT LAYER

HIDDEN
LAYER 2

HIDDEN
LAYER 1

INPUT LAYER
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The net initialization is achieved using fixed pseudo-random, unique pseudo-random, seeded pseudo-
random or O values. The net size, the net structure, the convergence function, the transfer
function, and the initialization mode are user selectable at initiation of training. @ We used nets
ranging in size from 512 to 8192 input nodes, hidden layer sizes of between 5 and 500 nodes, and
an output layer of less than 20 nodes. The transfer function used was the logistic sigmoid transfer
function.

Additionally, we implemented for EP analysis a probabilistic neural network (PNN) as described by
Specht (1990) (Figure below), a reduced coulomb energy (RCE} neural network, closely related to
PNNs, and a discriminant pattern recognizer (Bow, 1984) .

DECISION
REGICNS

DATA POINTS

B. NETWORK TRAINING PARADIGM

Training was achieved using back propagation via modified steepest descent (Rumelhardt, 1987).
This entails multiplication of the input values by the interconnection weights, calculation of each
layer's output, and propagation of the outputs forward through each successive layer of the
network with the calculation of the mean squared error between the output and the desired output.
At the end of each training cycle, which consists of a complete presentation of all patterns in the
training set, the total calculated error was propagated backwards and the adjustment of the
individual weights was made, as outlined in Rumelhardt, 1987. Usually, we obtained an initial
pattern match within approximately 50 training cycles using several hundred test patterns, with full
convergence taking up to hundred cycles. The network ran entirely in RAM memory on the 1860,
with an optimized assembly language floating point dot product requiring approximately 10 to 30
minutes per training cycle.

C. NETWORK TESTING PARADIGM

For testing, input data is presented to the network without weight adjustment. The calculated
output of the neural network was compared to the expert classification to determine if the
classification was successful. Results were then tabulated, and the classification percent correct
was calculated.

Separate methods of validation were used for large (> 100 epochs) and small (<100 epochs) data
sets. For large data sets, the set is split into two subsets - one for training and the other for
testing. For small data sets the "holdout™ method is employed. A single epoch is held out, and the
network is trained on the remaining epochs. The withheld epoch is tested against the trained
network. This process is repeated for all epochs in the data set (Specht, 1990; Marchette and
Priebe, 1987; Maloney, 1988).
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EEG NEURAL NETWORKS

. Neural network classification of EEG was investigated using data reduced input via the FFT or an AR
- mode! and also raw EEG data.

A. FFT

= Input data was decimated to 512 points per channel per 10 second epoch. These data were

converted to 512 point power spectra. This is accomplished by applying a standard FFT and taking
o the squared magnitude of the coefficients. The spectra were then used as input to the neural
= networks.

B. AR

Input data was initially modeled by a modified covariance ARMA autoregressive moving average
model, a Burg model, and a Prony model. The ARMA model was used for classification of EEG
because we observed that it consistently produced the most stable and accurate spectra. The
ARMA model of EEG consisted of two real coefficients and one hundred complex coefficients. This
exceeds the number of coefficients customarily employed to describe EEG spectra (Jansen, 1985).

1

= These coefficients were used to compute a 512 point power spectrum. The spectra were the used

o as inputs to the neural networks.

= C. RAW EEG DATA.

= A limitation of the use of raw EEG for neural network input is that the data is scale and translation

= dependent, but EEG interpretation is largely translation and scale independent. Our initial solution to

= this problem was to train the neural network on rotated and scaled versions of each training epoch.
This approach, however, would have resulted in a prohibitive increase in the required number of

= training epochs. For example, in investigations described below, we used typically 150 training

f§ epochs. Each epoch would be transformed into 2560 translated and scaled versions, resulting in a
total of 384,000 training epochs [256 translations and 10 ampiitude scale levels]. Training the

o neural network with this number of epochs would not have been practical.

= We investigated structural modifications to the neural network to make it immune to translation and
amplitude variations in the training set. We implemented a modification of the method of Goggin et

=4 al (1991) which preprocesses the epoch into a form that is not effected by translation and

E _ amplitude variations. Each epoch contains typically 16 channels, each of which is a time series of

512 data points. Each channel is transformed into a translation and scale invariant form as shown
in equation 1, below:

(i

J—
EX k’ X MOD(k+i,N)

(0

i

it

-
b

The transformed data is then processed by the back propagation neural network. Neural network

i i

employing polynomial transformed data have been named "higher order neural networks" {(HONN).
= EP NEURAL NETWORKS
S In all cases, input to the recognition software consisted of raw 1024 point per channel (both
- replications). We implemented a fully interconnected feed forward net with a selectable number of
L nodes {Figure above). The neural network had four layers (i.e. two hidden layers).

=3
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The desired outputs were presented to the network as ones and zeros to indicate normal, abnormal,
or uninterpretable. Latency and amplitude data were encoded as eight bit binary values. An output
of the network was assigned to each bit of the binary value. BAEP and SEP latencies where
encoded after multiplying by 10, or 0.1 msec per unit. Amplitude data was encoded as eight bit
binary values, 0.1 microvolts per unit.

The interconnection weights of the net were initialized to small random values using a random
number generator. We used nets ranging in size from 1024 to 8192 input nodes, and an output
layer of less than 100 nodes. First and second hidden layers contained 512 and 256 nodes
respectively. The transfer function used was the logistic sigmoid transfer function.

Network training was achieved using back propagation via modified steepest descent as described
above. Usually, we obtained an initial pattern match within approximately 50 training cycles using
several hundred test patterns, with full convergence taking typically one hundred cycles. The
network ran entirely in RAM memory on the 1860, with an optimized assembly language floating
point dot product requiring approximately 10 to 30 minutes per training cycle, or about 4 to 12
hours for full convergence.

For testing, input data is presented to the network without weight adjustment. The calculated
output of the neural network was compared to the expert classification to determine if the
classification was successful. Results were then tabulated, and the classification percent correct
was calculated. For each data sets the "holdout” method described above was employed.

In addition to back propagation, we also implemented and evaluated RCE and PNN networks.

NEURAL NETWORK RESULTS

EEG CLASSIFICATION RESULTS

All results presented below were obtained using a four layer network (i.e. two hidden layers). We
observed that when a sufficient number of nodes were present in the network, training required less
than 100 passes over all the epochs in the training set In all cases the net converged and 100%
correct identification of the training set was obtained prior to testing.

In all cases, EEG pattern classification using raw EEG was superior to that using FFT or AR input.
Furthermore, the HONN outperformed the standard neural network, producing excellent results in all
cases. Typical results obtained using the small data set paradigm are illustrated in Table 2, below.
In the table, EF refers to eye flutter, IRS to intermittent rhythmic generalized slowing, SH to focal
sharp waves, CPD to continuous polymorphic delta, M to muscle artifact and NL to normal. The
network size designation in the Table is as follows: number of nodes in the input layer X number of
hidden nodes in first hidden layer X number of hidden nodes in the second hidden layer X number of
nodes in the output layer.
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EEG Test Patterns

EF vs. NL RS vs. EF RS vs. EF SH vs. CPD SPvs.NL SPvs. M
Network 512x20x 512x20x 1024x20x 2048x20x 8192x50 8192x50
Size 10x2 10x2 10x2 10x2 x10x2 x10x2
Channels 1 1 2 4 16 16
Data Types | Percent Correct Classification
FFT 57 50 55 52 60 62
AR 52 45 50 48 52 55
Raw EEG 82.5 75 85 75 80 75
HONN AR 75 70 65 60 75 76
HONN FFT 80 65 78 75 78 79
HONN Raw | 95 90 95 90 95 95

The above results indicate that superior classification is obtained using raw EEG input when
compared to either AR or FFT spectra. We speculate that the inferior performance of AR and FFT
based methods is attributable to information loss inherent in these spectral representation of the
EEG waveforms. Qur results further indicate that use of multiple channels {IRS vs. EF comparisons)
improves performance. The best performance, achieving level of EEG pattern recognition accuracy
suitable for clinical applications, was obtained using the high order neural network (HONN)

methods.

Performance of the our initial, non-translational invariant, network (STD} and the high order neural
network (HONN) using raw EEG data was further evaluated using the large data set paradigm to test
classification of states of arousal, abnormalities, and artifact identification. For state, 150 sixteen
channel test epochs were used. The size of the network was 8192 x 200 x 50 x 3. Results are
shown below .

State % Correct Classification
STD HONN
Wake 82 a3
Stage | Sleep 86 97
Stage Il Sleep 66 95 o

Again, using the large data set paradigm, 150 test epochs were classified as normal or
demonstrating any of the following "abnormalities™: continuous slowing (any type), intermittent
slowing (any type), slow alpha, or uninterpretable. The network size was 8192 x 200 x 50 x b.
Results are shown in Table 4, below.

Category % Correct Classification

STD HONN
Normal 82 98
Intrm slowing 70 93
Cont slowing 70 97
Slow alpha 77 92
Uninterpretable 50 98

Finally, for detection of the presence and classification of types of artifacts, 150 sixteen channel
test epochs were used. The size of the network was 8192 x 200 x 50 x 6. Results are shown

below .
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Artifact % Correct Classification
STD HONN

None 70 97
Eye Flutter 10) 97
Eye Blinks 80 95
Horiz Eye Mnts 66 98
Muscle 73 98
Movements 68 . 98

The above resuits confirm the suitability of the HONN network for accurate identification of a wide
variety of EEG waveform patterns.

EVOKED POTENTIAL CLASSIFICATION RESULTS

1. LATENCY MIEASUREMENT RESULTS

The Table below depicts the latency measurement errors for wave I, Ilf and V of the BAEP, as made
by three different neural networks and a discriminant method. All neural network methods
performed well, with errors close to human measurement error on BEAPs recordings, which is
approximately 0.1 - 0.2 MS or 1-2% of the standard 10 msec sweep. The discriminant methods
was not as successful. The most accurate classification was achieved by the back propagation
method.

BAEP Latency Error Std Dev

Milliseconds BP RCE [PNN |Discr |[# Cases
] 0.20 0.22 10.24 (1.00 |172
1l 0.30 0.33 ]0.40 (1.20 [168
\' 0.30 0.33 |0.30 |1.50 {178

The Table below presents the classification results for median nerve SEP data. The latency
measurement accuracy achieved by all neural network methods was excellent. The back
propagation performed best. The latency measurement error of the BP network was similar to
human measurement errors, which is approximately 0.5 MS, or 1% of the standard 50 msec
sweep. Again the discriminant method performed poorly.

SEP Latency Error Std Dev

Milliseconds BP RCE PNN iDiscr |# Cases
N9 0.30 (0.33 |0.45 |1.10 |221
P14 0.70 |0.77 1.05 {2.10 |218
N20 0.30 {0.33 10.45 [4.20 |213

Similarly, the Table below iliustrates classifications for VEPs. Classification accuracy was excellent
for all neural network techniques, the best performance being achieved by the back propagation
method. The 1 msec error for BP is 0.5% of the standard 200 msec sweep. The discriminant
method performed poorly.
VEP Latency Error Std Dev
Milliseconds BP RCE |PNN |Discr |# Cases
[P100 1.00_]1.10 [1.50 [5.10 [270
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I. AMPLITUDE MIEASUREMENT RESULTS

The Table below presents our amplitude measurement results using BAEP data. Accurate amplitude
measurement were made by all neural network methods tested. The best performance was
achieved by the back propagation network and the discriminant method performed poorly.
BAEP Amplitude Error Std Dev

micro BP RCE PNN Discr | # Cases
I Vv 0.08 0.48 0.62 1.01 101

Similarly, the Table below presents our amplitude measurement resuits for SEP data.

SEP Amplitude Error

micro | BP [RCE| PNN | Discr |# Cases
N9 0.3210.38| 0.47 | 0.7 105
P14 [0.15]0.72| 0.75 1.17 105
N20 (0.23]0.51| 0.50 | 0.71 105

Our amplitude measurement results are presented in the Table. Again, the back propagation
method provides the most accurate amplitude measurement.
VEP Amplitude Error Std Dev
micro  [BP RCE PNN Discr _ |# Cases
[P100 [1.20 1.23 1.32 2.34 |270

. CLASSIFICATION RESULTS

The Tables below present the accuracy by which the three neural network and the discriminate
method classified EP recording of the three modalities and "Normal”, "Abnormal”™ or
"Uninterpretable”. The best performance was achieved by the back propagation method, which
classified 94% of EP studies in agreement with the "expert” reader. Additionally, ninety percent of
records that were uninterpretable due to noise contamination were correctly identified.

BAEP

% Correct BP RCE |[PNN |Discr |# Cases
Result

Normal 95% |(91% |82% |56% |96
Abnormal 92% |87% |80% {54% 21
Uninterpr 90% |80% (80% [60% |10
Overall 93% 89% 81% 55% 197
SEP

% Correct BP RCE |PNN |Discr [# Cases
Result

Normal 97% |89% |84% |64% (155
Abnormal 93% |86% |82% [|61% |30
Uninterpr 90% |83% |77% (60% |44
Overall 95% 87% B82% 63% 229
VEP

% Correct BP RCE [PNN |Discr |# Cases
Result

Normal 97% |93% 1|91% [63% |166
Abnormal 91% 1|89% |87% |60% |45
Uninterpr 91% |{87% [85% {59% |95
Overall 94% 91% 89% 61% 306
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= -
. MULTICHANNEL RESULTS %
The above results were obtained by presenting the neural networks with multiple channels (3 for _
BAEPs, 4 for SEP, and 6 for VEP). The effect of multiple channels on the performance of neural —
network classification was examined by omitting channels which did not specifically contain a J
designated waveform of interest, but provided information which is used in human waveform
recognition. Specifically, Ac-Cz and Ai-Ac channels for BAEPs, and SC5-Fpz for SEPs. In all cases, —
inclusion of these "extra” channels improved classification and measurement results slightly. In % B
some cases, major improvements were linked to the use of extra channels. For examples, use of
three channel resulted in a 24% improvement in wave |ll amplitude measurement.
BAEPs ol
% Number of channels
Correct 1 } 2 3 =
Result ;
Norm 949% 95% 95%
Abnormal (90% 91% 92%
Uninterp  |90% 90% 90% =
-
BAEP Latency Error
Number of channels =
msec 1 2 3 -
Wave L
| 0.23 0.21 0.20
1] 0.53 0.42 0.40 =
Y 0.32 0.33 0.30 [~ |
BAEP Amplitude Error L
Number of channels =
u-Volts 1 2 3 bl
Wave
| 0.32 0.30 0.30 w=
m 0.42 0.33 0.32 -
\Y 0.34 0.27 0.26
SEP Classification accuracy - =
% Number of channels -
Correct 3 4
Result
Norm 97% 97%
Abnormal [93% 93%
Uninterp 87% 90%
SEP Latency Error -

Number of channels

msec 3 4 —

Wave

N9 0.31 0.30 E

P14 0.89 0.75 B

N20 0.32 0.30 5
-
-
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CONCLUSIONS

Our results confirm that:

1. Neural networks are able to accurately identifying EEG patterns and evoked potential
wave components, and measuring evoked potential waveform latencies and amplitudes.

2. Neural networks are able to accurately detect EP and EEG recordings that have been
contaminated by noise.

3. The best performance was attained consistently with the back propagation network for
EP and the HONN for EEGs.

4. Neural network performed consistently better than other methods evaluated.

5. Neural network EEG and EP analyses are readily performed on multichannel data.
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Smart Vision Chips:
An Overview

Christof Koch
California Institute of Technology

May 1994

1. Four Working Analog VLSI Vision Chips

(a) Time-Derivative Retina (Delbriick & Mead)

(b) Zero-Crossing Chip (Bair & Koch)

(c¢) Resistive Fuse (Harris & Koch)

(d) Figure-Ground Chip (Luo, Koch & Mathur)
2. Work in Progress |

3. Conceptual and Practical Lessons Learned
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Christof Koch: Smart Vision Chips 2

ﬁ
Silicon Retina that Computes a Pure Temporal Derivative
T. Delbriick and C. Mead, 1991 =
]
e Array of 68 by 43 adaptive, high-gain, logarithmic g
photoreceptors, implemented in analog CMOS.
e No spatial interactions. 2
e Array has low offsets and consumes about 4 mW %
power.
e Array has very small fill-factor (< 3%).
=
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Christof Koch: Smart Vision Chips

1-D Chip that Computes Edges
W. Bair and C. Koch, 1991

e 64 pixel, logarithmic photoreceptors in analog CMOS.

o Bach resistive grid implements low-pass filter G(w) =

1 . . .
To7- Where A is given by the resistances.

e Chip computes thresholded zero-crossing between two

resistive networks (implementing a band-pass filter).

e Output is 63 bit word, indicating presence of edge

between adjacent pixels.
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Christof Koch: Smart Vision Chips 4

Smoothing 2-D Data in the Presence of Discontinuities
J. Harris, C. Koch'and J. Luo, 1990

e Algorithmic justification: If values of some variable
(for example, depth, hue, intensity) between two ad-
jacent pixels is similar, then smooth away the differ-
ence (since it is most likely caused by unavoidable
image noise). If the difference is above a threshold,
then preserve it, since it is most likely caused by a

discontinuity between the two locations.

e These constraints can be implementéd within a single

two-terminal device, the resistive fuse.

e Device has nonlinear I-V relationship, similar to an

electrical fuse.

e Deterministic annealing can be carried out by dy-

namically adjusting the I-V relationship.

e Performance of a 20 by 20 pixel analog CMOS chip

is shown.
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Christof Koch: Smart Vision Chips

Segregating a “Figure” from “Ground”
J. Luo, C. Koch and B. Mathur 1992

e 48 by 48 pixel resistive grid with configurable switches
in analog CMOS.

o Off-chip circuitry detects—possibly incomplete—edges

and sets switches appropriately.

e Voltage inside one (or more) figures clearly demar-

cates them from surrounding pixels.

e Resistive network has natural boundary completion

property.
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Christof Koch: Smart Vision Chips

Work in Progress: Computing Motion

o Differential methods to compute velocity (e.g. v =
—1;/1I,) are numerically ill-conditioned and require

very accurate components.

o Correlation methods to estimate velocity (e.g. I(z,t)x

I(z + Az, t+ At)) are robust but expensive in VLSI.

e Computing velocity in the temporal pulse domain
appears very promising (Sarpeshkar, Bair and Koch,
1993).

e Special-purpose analog motion sensors can be built
for estimating time-to-contact, observer head-
ing, discontinuities in the optical flow and

other qualitative features of the optical flow field.

e Exploiting Green’s theorem
/A V- -V(z,y)dzdy = /C V - nds

to compute 7 (time-to-collision) in a very robust man-

ner (using a single sensor).
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Christof Koch: Smart Vision Chips

Work in Progress: Neuromorphic Systems

e Carver Mead»emphasizes analog VLSI as a medium
to model and understand the nervous system (syn-

thetic neurobiology).

e Mahowald and Douglas (1991) have successfully built
pyramidal cells in analog CMOS, including den-
dritic trees, EPSPs and IPSPs and nonlinear mem-

brane conductances.

e Koch, Douglas, Sejnowski and Lisberger are involved
in long-term project to build a complete oculo-motor
system (including two retinae on movable platform,
superior colliculus, brain stem nucleus for eye plant,
and cortical areas) based upon the visual system of

primates.
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Christof Koch: Smart Vision Chips

What Lessons Have We Learned

e Conception, design and fabrication of smart vision
chips must go hand-in-hand with the design of the

appropriate vision algorithms.

e It is crucial to understand what types of computa-
tions map naturally onto analog hardware and which
ones are better suited to Turing universal digital

machines (e.g. motion analysis).

e Important to integrate adaptation and learning abili-
ties at all levels of the circuitry (from photoreceptors

to output).
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Christof Koch: Smart Vision Chips

What Should We Do

e Principal limitation of today’s circuits is not small
array size (< 100 x 100 pixels) but lack of further

on-chip processing power.

e Do not emphasize development of very costly basic
fabrication and circuit technology at the expense of
inexpensive algorithmic development and implemen-

tation.

° Dévelopment of interchip communication protocols
(e.g. Mahowald and Mead’s event-driven address-

ing scheme).

e Design not just smart add-on’s, but complete, au-

tonomous systems.

135



{

B 1

Wil i

Wil m ¥

L)

a1 f { N

L



2
—

N95- 25266

YO T/5

) L
/"

V) ‘eudpese]
A3o10uyd9 J, SOIUOIIIIPROIDI]A] dedg 10] 19jud)
A3o[ouyda ], Jo ymMnsuy eruIojife)
KLiojeaoqery uoispndoag 13f

B[[edOR]A] BUUBAY

wyaeyg qooef

UBLIBWOO |, PRZYIN
nems) dydpueyg

pne( BYe],
Jooyey], luy
[PMe], [noey

wed ], Tdf

137

Hoj3 o
se|bno( [jeuuoqgoun

paaLpjo0]

swalsAs Azzn4-01naN Juabijeiul
Buisn uonoaleg Ajewouy
9I91YaA youne] aoeds ul Ayjigeldipaid

PRECEDING PAGE BLANK NOT FILMED

oy R L) I T A el O I D O

-
INTENTIONALLY BLANK



R DT BT S BT B BN NN R B A R DT DT BN B N

1dlF

S9|JIY9aA ydune] u] usag
9ABH sainjieq Wbi4 8yl asaym

, (S) AIVWONY o
SIHNMUVA TV 40 %12
S1S ‘1N0JS ‘NVLIL MO4 dOHd — S3MIvA TV 40 “mmm
'VL13Q/HOHL 'SVILY :STTOIHIA (sgpndany | 1S3UNIVS TV A0 %58 ..
S3NIBYNL — S1HOITd 692
(+) SIATVA — NO NOISINJOHd aIOS .
(1) QYOIAV ] — ( mv m_m %% m (2) SOINNYYAAH —
| WOl —
(S) NMONYNN—| (1) TYOIH19313 — @ HOLVH3RaD | &
(1) IOHLINOD —
() avo3aNN | (1) SOILYWN3Nd—  3anLLLY—
13N4 - (1) GNOYHS
(¥) $301A3Q () nwi on I @2
(IVONINLIHON—  NOIVHYJ3IS—  QNV OHAD— arnos laden (1) SHNVL
(9) veul6) (26) wo“m_xw @
H3HLO SOINOIAY || NOISTINdOHd SRS S3HNLONYLS
[ T [ : ]
NMORDINN SW3LSAS SNALSAS
W31SAS-NON NIV A

salnjie} 85 ‘(28-9961) SIHOINL TV1OL ZvL

SW3LSAS INJFWIDVYNVN HLIVIH T1DIHIA
HONNVYT HO4d SHOSS3IOOHdOHNAN LNIDITIILNI




Tl

SAV130 40 'ON
JHYMAHYH  NOISINdOHd
H3HIO JONVH LHOI anon W3ALSAS

4

]
174
11
oY
0S
09

34014 YO AVQ 3NO 340 SAV 130 ‘3I0N

139

(SAVA) INIL AV13A JAILYINNND

SWALSAS INIW3IOVNVIN HLIVIH ITOIHIA
HONNVT HO4d SHOSSZOOHdOHN3IN LINIOITTILNI

SR S Y R TR T O T O VOO | S S | N AN ! TN 11 S | Y |1



T 2 11 W___:_.- I M ‘um o 1 S il | S RN B

-

'SHNOH HNILSIL TV 40
oNIaVOT woe nang 3 1VH HOd INNODJJY SINALSAS
INVTI3dOoHd E? NOISTINdOHd ANV SdIn4

%81
SOINOIAY

NOISTNdOHd | v
¥ saind %Ce

TVYOINVHOIN

%8
"OSIN

SINOoH suoljeradQ Jo umopyea.ig

SIW3ALSAS LNIWIADYNVN HLIVIH FIOIHIA
HONNVYT HOd SHOSSIOOHdOHNIN LNIADITIILNI

140



il

L

—
-

(N

1T

i

LT

:‘ ﬂﬁﬂ‘

("

{1

—
o

fi Ion

Failure of Mars Probe
Blamed on Fuel Leak
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JPL Workshop: "A Decade of Neural Networiés:
Practical Applications and Prospects”
May 11th-13th, 1994

Neural Networks: Application to Medical Imaging
Laurence P. Clarke, Ph.D., FAAPM, FSNM
Professor of Radiology and Physics

College of Medicine
and
H. Lee Moffitt Cancer Center and Research Institute
University of South Florida
Tampa, FL 33612-4799
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RESEARCH MISSION

Development of computer assisted diagnostic (CAD)
methods for improved diagnosis of medical images
including digital x-ray sensors and tomographic imaging
modalities.

*The CAD algorithms include advanced methods for
adaptive nonlinear filters for image noise suppression,
hybrid wavelet methods for feature segmentation and
enhancement and high convergence neural networks for
feature detection and VLSI implementation of NN for real
time analysis. These methods are designed for fully
automatic CAD methods that are operator, image and
sensor independent for universal application for medical
image analysis.

Implementation of CAD methods on hospital based
picture archiving computer systems (PACS) and
information networks for central and remote diagnosis i.e.
for cost effective health care delivery and standardization
of diagnosis.

*Collaboration with defense and medical industry, NASA
and Federal Laboratories in the area of dual use
technology conversion from defense or aerospace to
medicine . |
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SPECIFIC PROJECTS INVOLVING NEURAL
NETWORKS

Development of computer assisted diagnostic (CAD)
methods for breast cancer screening using digital
mammography.  Projects include NN of different
architecture tailored for each project:

1. Automatic detection of microcalcification

2. Detection of masses or parenchymal tissue
distortion |

3. Recognition of normal vs abnormal
mammograms

*Development of nuclear medicine imaging methods for
detection of beta particles used for antibody therapy or
imaging of positron emitters.

1. Order statistic neural network for image
resolution restoration based on systems physical
response characteristics

*Development of MRI segmentation techniques using
backpropagation and cascade correlation neural networks
for tissue characterization.

1. Automatic segmentation of tumor volumes
2. Surgery simulation
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Fig. 3.

{o) Digitized unprocessed chest x—ray.

{b) Enhancement by adaptive multistage nonlineor filter
with an order statistic aperation.

{c) Enhancernent by adaptive multistoge nonlinear filter
with a fnear aperaotion.

{d) Processing by o tree—structured nonlinear filter
and a dispersion edge detectar.
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CURRENT COLLABORATORS:
FEDERAL/INDUSTRY

NASA Jet Propulsion Laboratory (JPL), Pasadena,
California. Neuroprocessing and  Analogue
Computing Devices (NACD).

Topic: Real time analysis of digital mammograms
using VLSI implementation of NNs.

NASA Ames. Search for extraterrestrial intelligence
(SETI), Moffett Field, California. High Resolution
Microwave Survey Project.

Topic:  Detection of weak signals in digital
mammograms for microcalcification and tumor
detection.

DOD. Navy Surface Warfare Center (NSWO),
Dahlgren, Virginia. Advanced Computations

. Technology Group.
~Topic:  Pattern Recognition methods in digital

mammography for identification of suspicious areas.

E-Systems. Garland Division, Dallas, Texas.
Information Technology Systems.

Topic:  Algorithm design and real time parameter
optimization in digital mammography.

Fischer Imaging, Denver, Colorado & Nanoptics,

Gainesville, Florida.
Topic: High resolution direct x-ray digital detection.
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Summary

Image compression for both still and moving images is an extremely important area of investigation, with
numerous applications to videoconferencing, interactive education, home entertainment, and potential ap-
plications to earth observation, medical imaging, digital libraries, and many other areas.

In this paper we describe our work on a neural network methodology to compress/decompress still and
. moving images. We use the “point-process” type neural network model we have developed [12, 13, 16]
" which is closer to biophysical reality than standard models, and yet is mathematically much more tractable.
We currently achieve compression ratios of the order of 120 : 1 for moving grey-level images, based on a
. combination of motion detection and compression. The observed Signal-to-Noise-Ratio varies from values
* above 25 to more than 35. Our method is computationally fast so that compression and decompression can

£ o3
P
E

C:

~ be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying

compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will
e avoid retransmitting portions of the image which have varied little from the previous frame.

Further improvements can be achieved by using on-line learning during compression, and by appropriate
. . compensation of non-linearities in the compression/decompression scheme. We expect to go well beyond the
T . 250 : 1 compression level for color images with good quality levels.
{55
E *Mr Sungur’s work was supported by a NATO Science Fellowship at Duke University administrated by The Scientific and

Technical Research Council of Turkey (TUBITAK), on leave from Department of Electrical and Electronics Engineering, Middle
East Technical University, 06531 Ankara, Turkey
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1 Introduction

As the volume of imaging data increases exponentially in a very wide variety of applications - including
remote sensing, earth observation, medical imaging, digital libraries and documents, HDTV, entertainment
and film, and videoconferencing — and as the needs for storing, retrieving and transmitting images expand,
digital image compression is becoming an even more crucial technology. Many of these application areas
- including earth observation, videoconferencing and many military applications — deal with sequences of
images which represent some form of motion. For instance, sequences of pictures taken by a satellite each
time it passes over nearly the same stretch of territory, after appropriate repositioning and compensation,
are successive instances of the same scene containing changes due to the motion of objects (vehicles, for
instance), or due to changing meteorological conditions. Thus compression can take great advantage of the
fact that image sequences need only keep track of changes which occur from one frame to the next.

In some areas (such as medical imaging) it is more customary to deal with grey-level images. In other areas of
application, one deals overwhelmingly with colour images (as in entertainment). The quality of a processed
or compressed image is judged quite differently, whether one deals with grey-level or with colour. In the
case of color, acceptable image quality will largely depend on the application. For instance, in HDTV one
would be unhappy with a change in skin pigmentation (a greenish face does not look too good ...), while the
change in a dress’ colour may not matter too much.

Lossless compression is adequate when low compression ratios are acceptable. Very substantial compression
ratios can only be achieved with lossy compression schemes. Many applications will accept lossy compression,
as long as the resulting quality is good. In some critical applications — such as medical imaging and military
observation - loss may not be tolerated. However even in those applications, compressed versions of archival
images may be conveniently used for remote interrogation and fast access. The aim is of image compression
is to encode images or image sequences into as few bits as possible with a decoding mechanism which
reconstructs the original image with an acceptable visual and/or informational quality. Another issue in
image compression and decompression is its speed, especially in real-time applications, or in those in which
the rate at which the source produces data is very high. It is therefore often important to be able to carry
out compression and decompression “on the fly” without additional delay in conveying the image.

In this paper we will describe a method for compressing and decompressing still and moving images. For
moving image sequences of grey-level images, we obtain better than 110 : 1 compression levels with 20 to 30
Signal to Noise Ratio (SN R). We use a learning algorithm for the “random neural network” model (Gelenbe
1989, 1990, 1993 [12, 13, 16] 1) to “teach” a set of networks to compress at different compression levels. A
schematic representation of the complete method we propose is shown in Figure 1. The method uses a
simple motion detection scheme, together with the set of learning neural networks for compression and
decompression.

In the sequel we first describe the problem, then review the literature, after which we describe our method
together with measurements describing the resulting compression levels, the SN R of reconstructed images.
We also provide an indication of the data transmission rates for the schemes we develop. This last metric
is particularly relevant when images are transferred over networks, since ‘the nature of the traffic determines
the performance levels which can be expected and the appropriate traffic controls which may have to be
imposed.

1This model has also been successfﬁl]y applied to other applications including optimization [15] and image texture analysis
and reconstruction [3, 4}. .
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Figure 1: Block diagram of the complete compression scheme.
1.1 The Image Compression Problem

A digital tmage I is described by a function f : Z x Z — {0,1,...,2F — 1} where Z is the set of natural
numbers, and & is the maximum number of bits to be used to represent the gray level of each pixel. In other
words, f is a mapping from discrete spatial coordinates (z,y) to gray level values. Thus, M x N x k bits
are required to store an M x N digital image. The aim of digital image compression is to develop a scheme
to encode the original image I into ¢he fewest number of bits such that the image I’ reconstructed from this
reduced representation through the decoding process is as similar to the original image as possible: i.e. the
problem is to design a COMPRESS and a DECOMPRESS block so that I ~ I’ and |I| << }Z| where |.| denotes
the size in bits (Figure 2).

I I I

——————={  COMPRESS DECOMPRESS
ORIGINAL COMPRESSED RECONSTRUCTED
IMAGE IMAGE IMAGE

Figure 2: Image Compression Block Diagram

The similarity measure can vary for each application. Some applications may require the reconstructed image
to be exactly the same as the original image, in which case the process is called lossless compression. In lossy
compresston, the peak signal-to-noise ratio or SNR is used as the measure of similarity or of dissimilarity,
although it does not necessarily reflect visual quality. Assuming that the original and reconstructed images
are represented by functions f(z,y) and g(z,y) of the pixel plane position (z,y), respectively, the SNR is
defined by:

E_1)2
SNR = 10logy, &~ 1) o
erms
where the root-means-square error is
_ | M=l N-d
Cims = €2 = MN [9(z,9) - f(z,y) )P (2
=0 y=0

«

When moving images are concerned, the compression ratio may vary dynamically with the specific image
or image portion being transmitted, since some advantage will be taken of the existence or non-existence
of significant motion in successive image frames. However the SN R metric will still be relevant to the
evaluation of the resulting quality.
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1.2 State-of-the-Art in Still and Moving Image compression

Image compression research generally addresses the basic trade-off between the reconstruction quality of
the compressed image, the compression ratio, and the complexity and speed of the compression algorithm.
The two currently accepted standards for still and moving image compression are JPEG ([34]) and MPEG
([25]). These schemes provide high compression ratios with good picture reconstruction qualities. How-
ever, the amount of computation required for both is generally too high for real-time applications. MPEG
uses the following techniques: 1) RGB color space coding to YCrCb coding, this gives and automatic 2:1
compression ratio, 2) JPEG encoding based on discrete cosine transform and quantization followed by some
lossless compression, which yields compression ratios as high as 30:1 with good image quality, and 3) Motion
Compensation, in which a frame can be encoded in terms of the previous and next frames. However, these
techniques severely limit the speed at which a sequence of images can be compressed.

Two classical techniques for still image compression are transform and sub-band encoding. In transform
coding techniques the image is subdivided into small block each of which undergoes some reversible linear
transformation (Fourier, Hadamard, Karhunen-Loeve, etc.) followed by quantization and coding based on
reducing redundant information in the transformed domain. In subband coding ([35]), an image is filtered to
create a set of images, each of which contains a limited range of spatial frequencies. These so-called subbands
are then downsampled, quantized and coded. These techniques require much computation. Another common
image compression method is vector quantization ([18]) which can achieve high compression ratios. A vector
quantizer is a system for mapping a stream of analog or very high rate or volume discrete data into a
sequence of low volume and rate data suitable for storage in mass memory, and communication over a digital
channel. This technique mainly suffers from edge degradation and high computational complexity. Although
some more sophisticated vector quantization schemes have been proposed to reduce edge effects ([30]), the
computation overhead still exists. Recently, novel approaches have been introduced based on pyramidal
structures [1], wavelet transforms [36], and fractal transforms [20]. These and some other new techniques
[24] inspired by the representation of visual information in the brain, can achieve high compression ratios
with good visual quality but are nevertheless computationally intensive.

The speed of compression/decompression is a major issue in applications such as videoconferencing, HDTV
applications, videophones, which are all likely to be a part of daily life in the near future. Artificial neural
networks [31] are being widely used as alternative computational tools in many applications. This popularity
is mainly due to the inherently parallel structure of these networks and to their learning capabilities which
can be effectively used for image compression.

Several researchers have used the Learning Vector Quantization (LVQ) network [23] for developing codebooks
whose distribution of codewords approximates the probabilistic distribution of data which is to be presented.
A Hopfield network for vector quantization which achieves compression of less than 4:1 is reported in [27]. A
Kohonen net method for codebook compression is demonstrated in [29]; it seems to perform slightly better
than another standard method of generating codebooks. Cottrell et al. ([8]) train a two-layer perceptron
with a small of number of hidden units to encode and decode images, but do not report encouraging results
about the performance of the network on previously unseen images. Using neural encoder/decoders has
been suggested by many researchers such as [6]. In [10], the authors present a neural network method for
finding coefficients of a 2-D Gabor transform. This 2-way function can then be quantized and encoded to
give good images at compression of under 1 bit/pixel, and as low as 0.38 bits/pixel with good image quality
in a particular case.

A feed-forward neural network model to achieve 16 : 1 compression of untrained images with SN R = 26.9dB
is presented in [26] by using four different networks to encode different “types” of images. A backpropagation
network to compress data at the hidden layer and an implementation on a 512 processor NCUBE are
discussed in [32]. In [19], the authors perform a comparison of backpropagation networks with recirculation
networks and the DCT (discrete cosine transform). The best results reported here are obtained with the
DCT, then with recirculation networks and finally with backpropagation networks. An interesting feature
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of this paper is that they show the basis images for the neural networks, which allows one to compare the
underlying matrix transformations of the neural networks to that of the DCT. In [11], the authors present
a VLSI implementation of a neuro vector quantization/codebook algorithm. In [28], the authors use a back-
propagation based nested training algorithm to do compression. For images on which the network has already
been trained (which is not specifically of practical use) the compression ratios and resulting qualities are
as follows: 8:1 (SNR = 22.89dB), 64:1 (SNR=15.15dB) to 256:1 (SNR=10.44dB). For previously “unseen”
images, results are given with the following ratios and qualities: 8:1 (SNR=18.13dB) to 64:1 (SNR=12.93dB).
Our own results for “unseen” images provide substantially better quality, especially at the lower compression
ratios (8:1 and 16:1). In [22], the authors suggest the use of a non-linear mapping function whose parameters
are learned in order to achieve better image compression in a standard backpropagation network.

Motion detection and compensation are key issues when one deals with moving images. Motion compensation
provides for a great deal of the compression in the MPEG standard. By using motion compensation, MPEG
can code the blocks in a frame in terms of motion vectors for the blocks in the previous and/or next
frames. To perform motion must be estimated using block matching over the area local to the block under
consideration. Exhaustive searches which consider all possible motion vectors yield good results. However
for large ranges, the cost of such a search becomes prohibitive and heuristic searches must be used. This
also raises the problem that full motion compensation cannot be performed in real time since it requires the
future frame to be known in advance. Partial motion compensation, in which blocks may be encoded only
in terms of blocks in the previous frame, may be used. One should also note that the MPEG standard does
not specify the method of motion compensation to be used and a neural solution to motion compensation
problem in two dimensions has been examined. In [9], a neural network for motion detection is presented;
however it only works for a one dimensional case and the authors state that problems arise when the approach
is extended to two dimensional detection of edge motion. It appears this approach would involve a great
deal of research before it could be usefully applied in moving picture compression. In [7], a neural network
method for motion estimation is presented. Drawbacks include the assumption that displacement is uniform
in the area of interest. This would be a problem in trying to estimate the motion of a human being in which
motion vectors differ over subsets of the picture.

2 Still Image Compression with the Random Neural Network

One of the common neural approaches in image compression is to train a network to encode and decode the
input data [8], so that the resulting difference between input and output images is minimized. The network
consists of an input layer and an output layer of equal sizes, with an intermediate layer of smaller size in
between. The ratio of the size of the input layer to the size of the intermediate layer is — of course — the
compression ratio. More generally, there can also be several intermediate layers. The network is usually
trained on one or more images so that it develops an internal representation corresponding not to the image
itself, but rather to the relevant features of a class of images.

In our approach, both the input, intermediate and output image is subdivided into equal-sized blocks and
compression is carried block by block (see Figure 3). This has the desirable effect of reducing the network
learning time. It also achieves good generalization, since the blocks comprising a single test image are used
as the training set. The amount of information representing the compression and decompression algorithm
(i.e. the “weights”) is also substantially reduced in this manner. We use a feedforward encoder/decoder
random neural network with one intermediate layer as shown in Figure 8. The weights between the input
layer and the intermediate layer correspond to the encoding or compression process, while the weights from
the intermediate to the output layer correspond to the decoding or decompression process.

Our current results use 8 x 8 boxes, where each element is a byte. We encode the 8-bit gray level values as
real numbers between 0 and 1, i.e. we map the [0, 255] interval into the [0, 1] interval since the grey level of
each image pixel is transformed into a real-valued excitation level of a neuron (and vice-versa). The network
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Figure 3: Compression of an arbitrarily large image using a neural encoder/decoder

is trained so as to minimize the squared error between the output and input values, thus maximizing the
SN R, with the proviso that the image SN R is measured for quantized values in [0,255) while the neural
network learning uses the corresponding real-valued network parameters. In all the results we report, both
in this section and when we deal with moving images, our networks are trained using the algorithm described
in [16] using a single image: the well-known 512 x 512 8-bit Lena. Indeed, we have found that Lena provides
some of the best results for training the network. The network is then tested for a variety of images, and we
have observed a reconstruction quality ranging from SN R = 23dB to more than 30dB for 16 : 1 compression
(i.e. 0.5 bits/pixel). As an example, Figure 4 shows our results with 16 : 1 compression for the 512 x 512
8-bit Peppers image [17].

SNR = 27.82

PEPPERS original

Figure 4: Test results for 16 : 1 compression (0.5 bit/pixel) with random neural network

2.1 Motion Detection

In many applications such as videoconferencing, sequences of image frames representing a moving scene are
transmitted. Often, a substantial part of an image, such as the background, basically does not move —
except for noise which may originate at various levels, including the imaging devices. On the other hand,
the objects in the image move relative to the background, but this displacement be quite small between any
two successive frames. We use these facts in order to perform motion detection. Specifically we examine the
8 x 8 boxes from successive frames F;_;, F;. Motion is sensed if the average grayscale value of a box in F;
differs from that of the corresponding box in frame F;_; by more than a certain amount d. We have observed
experimentally that the difference in the average grayscale value of a block that is perceptable to the human

176




,,.U
I

(e

LTl

L.

A 1t

[

i

P

et
bl

£

ot
e il

eye is around around d = 1. Note that the box structure used throughout our compression scheme makes
this approach possible as long as the box size is small enough. Indeed, a large box size would either make it
highly improbable that motion has not occurred within any given box, or would render the detection process
insensitive if accompanied by a large value of d.

We use the first 101 frames of gray-level image sequences, Miss America and Salesman, to test our motion
detector. Each frame is of size 360 x 288 yielding 1620 8 x 8 boxes. To test the motion detector, we load
the first two frames into two arrays. Array 1 contains the frame which is on the screen at the receiving
end of the transmission, while Array 2 is the new frame. Fach 8 x 8 box in the frames is tested for motion
detection. If a box is classified as unchanged, the box in Array 1 is replaced by the box in Array. Once
all of the boxes are tested, the next frame is loaded into Array 2, and the process is repeated. Clearly, the
parameter d will influence both the compression ratios and the resulting image quality. In order to illustrate
its effect on compression we have run a series of tests summarized on Table 1. In the tabulated information
note that the “Total Compression Ratio” is derived from the size of the whole video sequence after motion
detection, whereas the “Steady State Compression Ratio” is the average compression ratio due to motion
detection over all the frames after the complete first frame has been transmitted. Both values do include the
overhead due to the additional bits sent for each box of each frame: two bytes to indicate z and y indices
of the block in that frame. For storage applications, a simpler and possibly more efficient scheme with one
bit per block can be used: a bit value of “1” means that motion is detected in the box and that it be sent,
while “0” means that the box will not be sent (and therefore that the previous frame’s corresponding box
should be used). However, considering network applications, we will prefer the former header so that the
image transmission will not be sensitive to packet losses.

Miss AMERICA SALESMAN

d Compression Ratio Frame SNR Compression Ratio Frame SNR

Total | Steady State | Min [ Max || Total | Steady State | Min | Max

0.5 || 225 2.28 38.78 | 40.83 || 3.01 3.07 37.38 | 44.15
1.0 || 4.44 4.59 36.81 | 39.51 || 6.55 6.94 35.04 | 43.42
1.5 || 6.06 6.38 35.72 | 38.07 || 9.23 10.06 33.66 | 42.59
20 || 7.25 7.74 34.57 | 3748 || 11.26 12.55 32.77 | 41.94
2.5 || 8.42 9.10 33.91 | 36.92 || 13.08 14.88 31.99 | 41.71
3.0 9.53 10.41 33.63 | 36.68 || 14.70 17.04 31.41 | 41.81
3.5 || 10.60 1173 | 3302 | 36.43 || 16.32 19.29 30.84 | 41.28
4.0 | 11.71 13.11 32.69 | 36.23 |} 18.01 21.71 30.60 | 41.05
4.5 || 12.82 14.54 32.37 | 35.80 || 19.75 24.30 30.05 | 40.50
5.0 || 13.96 16.04 32.08 | 35.55 || 21.38 26.86 29.77 | 40.12

Table 1: Compression ratios obtained only by motion detection: as a function of difference threshold d

Other results are presented in the form of the actual images before and after motion detection. Figure 5
shows the original and the reconstructed 101st —and last~ frame of the sequence with d = 1. In F igure 6(a),
the SN R is plotted as a function of frame number for d = 1. Similarly Figure 6(b) shows the number of
bits transmitted as a function of frame number. ;From these results and other experiments we have run,
it appears that a compression ratio of 6 or 7 can be obtained easily with a value of d close to or slightly
above 1, with satisfactory image quality, when only motion detection is used for compression. In the next
section this scheme will be combined with the actual neural compression of frames in order to achieve high
compression ratios and satisfactory image quality.
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Original 101st frame Reconstructed (SNR = 38.21)

Figure 5: Original and reconstructed last frames (101st frames) in the SALESMAN sequence using the motion
detection scheme with d =1
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Figure 6: Experimental results for motion detection with d = 1: a) PSNR as a function of frame number, b)
Number of bits transmitted as a function of frame number

3 Compression for Moving Images

In this section we will describe and evaluate the complete compression scheme for video sequences of natural
images, using a combination of the motion detection scheme described earlier together with our adaptive still
block-by-block (Figure 3) random neural network compression/decompression. Specifically, our compression
scheme uses three networks:

s The first network scans successive boxes (fixed size portions of the image) in sequence, and identifies
those boxes where motion has taken place, as described above. If a box is considered to be identical
to the same box in the previous frame, it is not compressed or transmitted.

» The second network carries out compression of the box which is identified by the first network. In fact
the second network is a set of distinct neural compression networks Cy, ..., Cr which are designed to
achieve different compression levels. Each of these networks compresses the box in parallel. The choice
of the compression level to be selected is carried out by the third network.

e The third network simulates the decompression, and provides a measure of the “quality” of the
compression-decompression. In fact it is composed of L distinct decompression networks Dy, ..., Dy,
where D; matches C;.
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Then the pair C;,D; which yields the highest compression ratio at a quality level of @ or better, chosen to be
acceptable for the particular application, is selected and the compressed box is transmitted. For grey-level
images @ is formulated as a SNR value. Figure 7 shows the block diagram of the adaptive still image
compression network. Note that with the exception of the initial learning phase, all the operations which
have been outlined above can be carried out “on-the-fly”, 1.e. in real-time as each box goes through the
transmitter, and as each compressed box goes through the receiver. (See Figure 1 for a block diagram of the
total proposed scheme).

Another refinement would be to use the network D; (which is stored both at the transmitting end and at
the receiving end) to further train the network C; in on-line mode. In this case, D;’s weights will not be
changed, and only C;’s weights are updated.

C; D, SNR

SELECT ——»

c, D, SNR H

\. J

Figure 7: Block diagram of the adaptive still image compression network

At the “receiving or decompression” end, if the transmitter has sent a 0 bit to indicate that the current box is
identical to the same box in the previous frame, then the previous frame’s box is placed in the corresponding
position of the output image. Otherwise the compressed box is received. Implicitly (through the box’s size)
or explicitly (via some variable i which would accompany the box) the compression level used is known to the
receiver. We then use the network D; to decompress the box, which is subsequently placed in appropriate

sequence into the output image. The relationship between any two compression/decompression networks
Ci, D; is shown in (Figure 8).

(3]

i |

=

M NEURONS N NEURONS
M

Figure 8: A Neural Network Compression/Decompression Pair

179



3.1 Experimental Results for Moving Image Compression

We have experimented the combined scheme with three still image compression machines (L = 3 with 8 : 1,
16 : 1 and 32 : 1 compression/decompression pairs), and have tested it on the 101-frame Miss America and
Salesman grey-level image sequences. Table 2 summarizes the results we have obtained for Q@ = 30.

Miss AMERICA SALESMAN

d Compression Ratio Frame SNR Compression Ratio Frame SNR
Total | Steady State | Min | Max || Total | Steady State | Min | Max
0.5 || 21.69 27.35 31.93 | 33.70 || 21.46 31.13 26.86 | 31.13
1.0 || 32.82 48.12 32.02 | 34.02 | 36.82 57.38 28.26 | 35.83

1.5 || 38.91 62.68 32.73 | 34.24 || 45.38 81.58 28.72 | 37.94
2.0 || 42.88 73.79 32.50 | 34.44 || 50.90 101.59 28.93 | 38.75
2.5 || 46.30 84.65 32.36 | 34.54 || 55.02 119.64 28.90 | 38.96

3.0 || 48.81 95.35 32.10 | 34.60 || 58.26 136.30 28.77 | 39.07
3.5 || 51.95 105.89 32.00 | 34.69 || 61.22 153.93 28.73 | 39.05
4.0 | 54.36 116.55 31.80 | 34.76 || 63.96 172.67 28.73 | 39.14
4.5 [| 56.70 128.03 31.71 | 34.88 || 66.52 192.91 28.57 | 39.05
5.0 || 58.92 140.01 31.50 | 34.91 | 68.74 213.08 28.54 | 39.00

Table 2: Compression ratios obtained by the combination of motion detection and still image compression
with Q = 30: as a function of difference threshold d

In Figure 9 we show the original and the reconstructed 101st frame of Miss America using the complete
scheme described above with d = 1.5 and Q = 30. Figure 10 indicates the variation of compression ratio
over time. Figure 11 shows the running average compression ratios and the running average bits per pixel
for a runlength of 1000, based on Miss America sequence with d =2 and Q = 30. In Figure 12.a, PSNR is
plotted as a function of frame number for d = 2, Q = 30. Figure 12.b shows the number of bits transmitted
as a function of frame number. S

Reconstructed (SNR = 32.83)

Original 101st frame

Figure 9: Original and reconstructed last frames (101st frames) in the Miss AMERICA sequence using the
motion detection scheme with d = 1.5 combined with still image compression with @ = 30

4 Discussion and Conclusions

Many further improvements of the basic method we propose can be thought of and some are certainly
worth further work. In particular the following observations can be used to design networks with enhanced
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= Figure 11: Experimental results with Miss AMERICA sequence using the combined scheme with d = 2 and
@ =30: a) Running average compression ratio as a function of block number, b) Running average bits
. per pixel as a function of block number
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Figure 12: Experimental results for the combined scheme with d = 2 and @ = 30: a) PSNR as a function
of frame number, b) Number of bits transmitted as a function of frame number

compression capabilities:

The random neural network learning algorithm (described in the Appendix) applies to arbitrary re-
current networks. Hence, instead of restricting ourselves to fully feedforward networks, we can use
feedback connections between the compressed and input layer, and the output layer and the com-
pressed layer. Further feedback is possible and useful locally within the output layer. Such feedback
can help the network find better compression/decompression parameters.

The quality level (e.g. SNR) predicted at the transmitting end is exactly what the result is for that
box, after it is decompressed at the receiver, since the networks Dy, ..., Dp are identical both at the
transmitter and receiver. Thus we propose to update the weights of the neural networks C1, ..., Ci
constantly using gradient descent to improve performance with each individual box. This will be
detrimental to the “real-time” nature of the whole approach we propose, but would be worth examining
in order to obtain much higher SN R figures.

It is also possible to store all of the compression networks C1, ..., Cr at the receiver — as well as at
the transmitter. Then, on-going improvement via learning as compression/decompression takes place
can be carried out periodically for both compression and decompression networks, at the expense of
transmitting some uncompressed frames or boxes from time to time.

Initial learning of weights can be carried out at the transmitter, or receiver, or both at the transmitter
and receiver, or off-line. The resulting weights would then be loaded into the transmitter and the
receiver. Note that if the sample images used for learning are known both to the transmitter and to
the receiver, then the quasi-identical set of weights (to the exception of possible different numerical
round-errors) can be obtained both at the transmitter and at the receiver. Thus, the images to be
used as a basis for learning can be transmitted from time to time (i.e. infrequently) from one to the
other in order to improve the system’s compression capabilities.

All the work described in this paper needs to be extended to colour images. Currently, learning of
the weights of each C;, D; pair is obtained using gradient descent and the SNR ratio is used as a
performance criterion is essentially equivalent to a quadratic cost function. We would use other cost
metrics (such as LAB-type measures) to carry out learning for colour images.

In addition to the general scheme described above, we will examine some other enhancements related to the
non-linearity of the input-output amplitude mapping of the compression/decompression scheme. We expect
to obtain further quality improvement with appropriate compensation of non-linearity. This compensation
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can also be part of the learning scheme. Moreover, the adaptive selection of the level of compression to
be used at the transmitter side can be improved by making use of the state of the transmission medium —
specifically of the network being used. This would be particularly relevant if we are dealing with an ATM
(Asynchronous Transfer Mode) network. The adaptive decision can be based on feedback about network
state - such as current load on the network - as well as SN R and/or visual quality metrics. For example,
in case of little load on the network, we can favor small compression ratios, thus increasing visual quality.
Similarly, in case of a heavily loaded network, we can sacrifice visual quality and transmit with maximal
compression. This adaptive decision can also be learned.

With some of the improvements described above, we expect to achieve compression ratios better than 250 : 1
for grey-level moving image sequences, and still higher levels for colour, with quality levels of the order of
SNR =30 for grey level images, and acceptable LAB-type measures and SN R levels for colour images.
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5 Appendix: The Random Neural Network Model and its
Learning Algorithm

In this appendix we provide a summary of the Random Neural Network Model and of its Learning Algorithm,
in order to provide a theoretical background for the techniques which are used in this paper.

5.1 The Random Neural Network Model

In the random neural network model (Gelenbe (1989,90) [12, 13]) signals in the form of spikes of unit
amplitude circulate among the neurons. Positive signals represent excitation and negative signals represent
inhibition. Each neuron’s state is a non-negative integer called its potential, which increases when an
excitation signal arrives to it, and decreases when an inhibition signal arrives. Thus, an excitatory spike is
interpreted as a “+1” signal at a receiving neuron, while an inhibitory spike is interpreted as a “~17 signal.

Neural potential also decreases when the neuron fires. Thus a neuron i emitting a spike, whether it be an
excitation or an inhibition, will lose potential of one unit, going from some state whose value is k; to the
state of value k; — 1.

The state of the n-neuron network at time ¢, is represented by the vector of non-negative integers k(t) =
(k1(2),.- ., ka(t)), where k;(t) is the potential or integer state of neuron i. We will denote by £ and k;
arbitrary values of the state vector and of the i-th neuron’s state.

Neuron i will “fire” (i.e. become excited and send out spikes) if its potential is positive. The spikes will then
be sent out at a rate r(i), with independent, identically and exponentially distributed inter-spike intervals.
Spikes will go out to some neuron j with probability pt(i,5) as excitatory signals, or with probability
p~ (%, 7) as inhibitory signals. A neuron may also send signals out of the network with probability d(7), and
d(i) + Yj-; [PH(E) + p7(5,9)] = L. Let wj; = r(7) p:*(i.,j), and wj; =r(i) p~(i,j). Here the “w’s”
play a role similar to that of the synaptic weights in connectionist models, though they specifically represent
rates of excitatory and inhibitory spike emission. They are non-negative. Exogenous (i.e. those coming from
the “outside world”) excitatory and inhibitory signals also arrive to neuron  at rates A(2), A(?), respectively.
This is a “recurrent network” model, i.e. a network which is allowed to have feedback loops, of arbitrary
topology.

Computations related to this model are based on the probability distribution of network state p(k,t) =
Pr[k(t) = k], or with the marginal probability that neuron i is excited ¢;(¢) = Pr[ki(¢) > 0]. Asa consequence,
the time-dependent behaviour of the model is described by an infinite system of Chapman-Kolmogorov
equations for discrete state-space continuous Markovian systems.

Information in this model is carried by the frequency at which spikes travel. Thus, neuron j, if it is excited,
will send spikes to neuron ¢ at a frequency w;; = wj'j + w;;. These spikes will be emitted at exponentially
distributed random intervals. In turn, each neuron behaves as a non-linear frequency demodulator since it
transforms the incoming excitatory and inhibitory spike trains’ rates into an “amplitude”, which is ¢;(t)
the probability that neuron i is excited at time t. Intuitively speaking, each neuron of this model is also
a frequency modulator, since neuron ¢ sends out excitatory and inhibitory spikes at rates (or frequencies)

g:(O)r(D)pt (4, ), ¢:(t)r(i)p~ (i, ) to any neuron j.

The stationary probability distribution associated with the model is the quantity used throughout the com-
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putations:
p(k) = tlim p(k,t), q= tlim (), i=1,...,n (3)
— 00 — o0

It is given by the following result:

Theorem 1. Let ¢; denote the quantity

¢ = AF(@)/[r(@) + A= (3)] (4)
where the A+ (i), A\=(d) for i = 1,...,n satisfy the system of nonlinear simultaneous equations:
MEA) =D grGet () +AG), A = oGP () + AG) (5)
J J

Let k(t) be the vector of neuron potentials at time t and k = (k1,..., ka) be a particular value of the vector;
let p(k) denote the stationary probability distribution.

p(k) = tl_l‘rglo Prob[k(t) = k]

If a nonnegative solution {A*(i), A\~ (i)} exists to equations 4 and 5 such that each q; < 1, then

n

p(k) = ]I - ¢ (6)

i=1

The quantities which are most useful for computational purposes, i.e. the probabilities that each neuron is
excited, are directly obtained from:

Jim Problki(t) > 0] = ¢ = M()/[r()+ A~ ()] ifq <1

5.2 The Learning Algorithm

Let us describe the learning algorithm we use in this study. It is based on the algorithm described in (Gelenbe
93) [16].

The algorithm chooses the set of network parameters W in order to learn a given set of K input-output pairs
(¢, Y) where the set of successive inputs is denoted ¢ = {¢1,...,ex}, and ¢ = (Ag, A¢) are pairs of positive
and negative signal flow rates entering each neuron:

Ay = [Ak(l), ...,Ak(n)], A = [Ak(l), ...,/\k(n)]

The successive desired outputs are the vectors Y = {v1, ..., yx}, where eachrvector Y& = (Y1%, .-, Ynk), whose
elements y;x€[0, 1] correspond to the desired values of each neuron. The network approximates the set of
desired output vectors in a manner that minimizes a cost function Ej:

1 0
By = E;ai(%“yﬁr), a; >0

If we wish to remove some neuron j from network output, and hence from the error function, it suffices to
set a; =0
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Both of the n by n weight matrices Wi = {w} (i,5)} and W = {w (§,7)} have to be learned after each
input is presented, by computing for each input ¢x = (Ax, Ax), 2 new value W and Wi of the weight
matrices, using gradient descent. Clearly, we seek only solutions for which all these weights are positive.

Let w(u,v) denote any weight term, which would be either w(u,v) = w™(u,v), or w(u,v) = wt(u,v). The
weights will be updated as follows:

we(u, v) = wi_1(y,v) — 772 ai(gix — ¥ix)[0¢: / Ow(u, v)]k Q)

i=1

where 1 > 0 is some constant, and

1. gik is calculated using the input ¢; and w(w,v) = we-1(y,v), in equation 3.

2. [8gi/8w(u, v)]x is evaluated at the values g; = gir and w(u, v) = we_1(u,v).

To compute [8¢; /w(u, v)]r we turn to the expression 3, from which we derive the following equation:
3q,~/3w(u,v) = ZaQJ/aw(usv)[w+(j: i) - w_(ja l)q,]/D(l)
J

~1[u = ig:/ D(i)
+1[w(u,v) = wt(u,i)])gu/D(7)
—1[w(u,v) = w™(u, {)]quq: /D(7)
Let q = (g1, .., qn), and define the n x n matrix
W = {[wt(i,5) - w (i,9)g)/D(G)} Li=1.n
We can now write the vector equatiomns:
8q/0w™ (u,v)
8q/0w™ (u,v)

8q/0wt (u, V)W + 7 (u,v)gu
0q/0w™ (u, V)W + 4~ (u, v)qu

where the elements of the n-vectors v+ (x,v) = [vF (4, 2), ..., 7 (w,v)], v~ (u,v) = [77 (v, 0),.. ., 77 (v, v)]
are

-1/D() fu=iv#i
7t (u,v) = +1/D(3) futiv=i
0 for all other values of (u,v)
—(1+¢:)/D(3) fu=iv=1
- _ —1/D(3) fu=iv#£i
W) = _g/DG) fugiv=i
0 for all other values of (u,v)

Notice that
3q/3w+(u, v) = 7+(": v)qu[I - W]—l (8)
8q/0w=(u,v) = v (4,v)qu[I-W]"!

where I denotes the n by n identity matrix. Hence the main computational work is to obtain [I — w]-L
This is of time complexity O(n®), or O(mn?) if an m-step relaxation method is used.

We now have the information to specify the complete learning algorithm for the network. We first initialize
the matrices W7 and W7 in some appropriate manner. This initiation will be made at random. Choose a
value of 7, and then for each successive value of k, starting with k =1 proceed as follows:
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1. Set the input values to ¢ = (Ag, Ai).

-

: 2. Solve the system of nonlinear equations 3 with these values.

3. Solve the system of linear equations (8) with the results of (2).

,-
"
b

Using equation 7 and the results of (2) and (3), update the matrices W} and W, . Since we seek
the “best” matrices (in terms of gradient descent of the quadratic cost function) that satisfy the

o nonnegativity constraint, in any step k of the algorithm, if the iteration yields a negative value of a
i3 term, we have two alternatives:

{

(a) Set the term to zero, and stop the iteration for this term in this term in this step k; in the next
stop k£ + 1 we will iterate on this term with the same rule starting from its current null value;

(b) Go back to the previous value of the term and iterate with a smaller value of 7.

This general scheme can be specialized to feedforward networks yielding a computational complexity of
O(n?), rather than O(n3), for each gradient iteration.
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Learning to Train Neural Networks for Real-World Control Problems W'
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ABSTRACT

Over the past three years, our group has concentrated on the application of neural
network methods to the training of controllers for real-world systems. This presentation
will describe our approach, survey what we have found to be important, mention some
contributions to the field, and show some representative results. Topics to be discussed
include:

1) executing model studies as rehearsal for experimental studies
2) the importance of correct derivatives
3) effective training with second-order (DEKF) methods
4) the efficacy of time-lagged recurrent networks
5) liberation from the tyranny of the control cycle using asynchronous truncated
backpropagation through time
6) multi-stream training for robustness

Results from model studies of automotive idle speed control will serve as examples for
several of these topics. Experimental results may also be shown.
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Les 9/ S

A Neural Network Controller for
Automated Composite Manufacturing

Peter F. Lichtenwalner

McDonnell Douglas Aerospace
New Aircraft and Missile Products

P.O. Box 516, St. Louis, MO 63166
(314) 233-7014
pete@aicenter.mdc.com

At McDonnell Douglas Aerospace (MDA), an artificial neural network
based control system has been developed and implemented to control laser
heating for the fiber placement composite manufacturing process. This
neurocontroller leams an approximate inverse model of the process on-line
to_provide performance that improves with experience and exceeds that of
conventional feedback control techniques. When untrained, the control
system behaves as a proportional plus integral (PI) controller. However after
leamning from experience, the neural network feedforward control module
provides control signals that greatly improve temperature tracking
performance. Faster convergence to new temperature set points and reduced
temperature deviation due to changing feed rate have been demonstrated on
the machine. A Cerebellar Model Articulation Controller (CMAC) network
is used for inverse modeling because of its rapid learning performance. This
control system is implemented in an IBM compatible 386 PC with an A/D
board interface to the machine.
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How Captain Amerika Uses Neural Networks to Fight Crime /) ‘

Steven K. Rogers, Matthew Kabrisky, Dennis W. Ruck and Mark E. Oxley

Air Force Institute of Technology
Department of Electrical and Computer Engineering
2950 P Street, Wright-Patterson AFB, OH 45433-7765
15 February 1994

Abstract

Artificial neural networks models can make amazing computations (some of which
are applicable to fighting crime: recognition of faces; speaker identification; fingerprint
recognition). Those models will be explained along with the application of those models
into problems associated with fighting crime. Specific problems addressed are
identification of people using face recognition, speaker identification as well as fingerprint
and handwriting analysis (biometric authentication).

I Introduction

Before getting started it is common to explain the Captain Amerika connection.
Captain America comic books describe the superhero as: "bom in the U.S.A,"
that obviously applies to the authors; "endowed with a superhuman physique," once you
see the authors at the conference you will make the obvious connection with this point;
and finally "fights an ongoing battle for liberty, justice, and the American dream!", who
needs Ross Perot? Oh, by the way, you might also notice in the comic book that Captain
America's secret identity is "Steve Rogers". The "k" in Captain Amerika is just a
copyright infringement worry of that author.

This lecture covers the application of artificial neural network techniques for
fighting crime. For example the image of a suspect might be provided to some law
enforcement agency for processing, possibly to recognize the person in the image. Image
processing usually consist of three stages. The first is the location of regions of interest
within the image (segmentation-find the face). The second step is the extraction of a set
of numbers which characterize the regions that are extracted (feature extraction-describe
the face). The last step is the processing of the features for
decision making (classification-decide who it is).

1 Crime Fighting Problems

An enormous part of crime fighting is recognition of faces. We will use this
problem to demonstrate the application of artificial neural networks to real world
problems. During the lecture other problems like fingerprint identification, speaker
identification and handwriting analysis will also be addressed. From automatic mugshot
matching to border crossing monitoring, law enforcement agencies need an autonomous
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face recognition capability. Such a system could also be used to verify users of automatic
teller machine cards, or control of login into sensitive computer systems. This capability
has also been used to interface handicapped people to computers. To be honest this last
application is the one that our group is the most excited about. In this case a young
Chicago lady (13 years old) who has cerebral palsy was interfaced to her personal
computer by recognizing her facial expressions.

m Segmentation

The finding of regions of interest in an image is called segmentation-find the face in
the image. Any errors in this step are preferred to be false acceptance, (passing pixels that
may not contain parts of the face), but not false negatives (miss regions that might contain
parts of the face). The same concept applies to processing sound. For example, when
trying to identify a speaker's voice, sound is recorded. The parts of the recording that
need to be identified must be segmented from the rest of the recording. To be of any
benefit, this step must significantly reduce the number of pixels or periods of the recording
that the next steps of feature extraction and classification must deal with. The processing
of the raw pixels to find the regions that might contain the face may be the toughest of the
image processing stages. To reduce the amount of computation necessary for the
subsequent processing the system should only look in those regions of space, time,
frequency, intensity or texture where the face is likely to be located. A one-pass
segmentation algorithm filters the raw data to eliminate obvious nonface regions (a
function of neighborhood calculations).

" Before feature extraction, image preprocessing is usually necessary. The most
common preprocessing is some form of energy normalization. The preprocessing is
necessary because images have characteristically low contrast and lots of irrelevant
structure. To be effective for real world images, the energy normalization is usually based
on local neighborhood information. Most segmentation techniques are based on
morphological operations, texture analysis and local intensity comparisons or spatial
frequency information processing that allow discrimination of regions of interest from the
rest of the pixels.

Single neurons can be probed by electrodes and stimulus response measurements
made. The results of such measurements show that the system cares about local
orientation information and motion direction. Similar more recent measurements have
expanded this idea to localized texture information as being the critical first step. To get
information from multiple locations, radioactive dyes have been used and clearly show the
mapping of the real world onto the visual cortex. One problem with these experiments is
that the animal has to volunteer to have its metabolism reduced to zero for the
measurements. Only volunteer animals are used of course. Using VLSI technology,
multiplexed array cortical electrodes have recently been made and implanted directly onto
Ccortex.
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v Feature Extraction

The processing of the data to extract a set of measurements (describe the face) that
represent the gestalt of the information required to decide who is in the image is called
feature extraction. There can be no information gained by this step; its purpose is to
increase the ratio of pertinent information to irrelevant data. If a perfect classification
stage could be accomplished on the raw data, it would achieve the lowest error possible.
But, in the problems of interest here, image processing for face recognition, the processing
of the raw data (the original images) is not always feasible. The dimensionality alone of
such a task make it not an option for some applications. For each region of interest
segmented, a set of features must be found to represent the region for classification.

There are several popular methods for obtaining the features to be used. The first
is to ask experts in the field of interest. For example in the problem of target recognition
some common features include: length-to-width ratio; hot spot intensity; or complexity.
Similarly, relevant expert extracted features are used in face recognition, such as the
distance between anthropometrically significant features. The distance between the eyes
or from the bridge of the nose to the chin. No one believes that computer aides for
recognition are useful if human extracted features have to be keyed in. Finding the
important parts of the face by using artificial neural networks is a key first step.

The second alternative is to have the segmented regions processed directly by the
neural feature extractor. One common neural feature extraction technique uses a layer of
artificial neurons with receptive fields in the input raw data. This is similar to the
processing discovered in visual striate cortex, V1. The Nobel Prize winning results of
Hubel and Wiesel clearly demonstrated that orientation selectivity and motion direction
selectivity within the receptive field of a striate neuron exists. The weights for these
artificial neurons are either found using a gradient search based learning algorithm,
hardwired based on some a priori knowledge (such as a Hubel and Wiesel or the later
work of Jones and Palmer) of types of feature extraction that might be useful.

Quite often after classification, questions are asked about which features caused a
particular decision to be made. That is, the question of why a particular region of a
photograph was called President Clinton and another called Ross Perot. It's not the shoes.
It's got to be the ears! A related question is: of the many features that may have been
suggested as useful for a given problem which ones are the most important ones for the
task of interest? The answer to this question is often used to reduce the set of feature
measurements (vector) to a smaller dimension. This is critical in applications where there
are only a limited amount of training data available. To reduce the feature vector, the
most common statistical and trial-and-error techniques have been augmented with neural
feature saliency techniques. Conventional statistical correlation ideas are the most
common technique to find how features are related. The discovery of nonobvious
relationships between features may be one of the great contributions of neural networks.
One of the early applications of neural networks was in loan analysis. The data on the
application for the loan were fed into a neural network and the network that had been
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trained on historical data on loan defaults would predict whether you would default. For
litigation reasons the users of such networks had to be able to determine the application
information that the network considered to be the indicator of you eventually defaulting.
There also currently exists artificial neural network systems that monitor credit card
transactions to detect fraud. They are trained on historical transaction data and analyze
current transactions to detect fraudulent transactions.

As a side note, using the biological insight a good set of candidate features can
often be found. In the application of speaker identification, measurements of the
processing of the pinna and frequency extraction as a function of distance along the
cochlea have resulted in models that have been demonstrated useful in sound localization
and speaker identification.

v Classification

Once the features that are to be used to decide whether a particular region of
interest requires further attention are extracted, they are submitted to the classification
stage. This is the area where neural techniques have proven to be most useful. The most
common neural techniques require an enormous amount of labeled data. Labeled data has
to be hand labeled by experts. It is the experience of these experts that the classification
step must learn to encode in the interconnection weights. In the application of face
recognition, some expert must feed the network with images and tell the network the
identity of the face. Similarly, someone must identify the voice from a training recording
before the system can identify the person from a later recording.

It has been proven many times in the literature that the common neural techniques
perform as approximators of the Bayes optimal decision elements (minimum probability of
error). This allows the user to know that if correctly engineered there are no first order
statistical techniques which will outperform the neural algorithms with respect to
accuracy. Even with this knowledge the comparison of the neural classification algorithms
with statistical techniques such as regression or quadratic discriminant function analysis is

useful to ensure that the neural technique is correctly engineered.
VI Future Work

The most unportant future area of research is in field test and demonstration.
Large scale tests will determine whether anything useful will come out of the preliminary
exciting results. It will only be by statistically significant improvement in real world
applications such as crime fighting that this technology will be proven.

Fundamental work on generalization predictions is also necessary. The question is
how much datawill be required in a given application to allow the system to be fielded
with some confidence on how well it will perform. How much shrinkage should be
expected from the accuracy rate seen in training to the rate that is expected in the real
world.
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The combination of neural with fuzzy and expert system techniques will also play a
key role in driving these solutions to useful applications. Joint conferences, such as the
IEEE World Congress on Computational Intelligence, may allow a quick improvement in
this area.

One of the most interesting areas of research is in consciousness. Real brains, of
course, think about being real brains. The idea of self-awareness as a computation going
on within your brain is controversial but true. How does a piece of meat think about being
a piece of meat? Could meat ever understand how it does it? Why does human meat
seem to be different from that of other animals even though all mammalian brains are
constructed to the same basic plan using the same basic parts? There are fundamental
limits to the computational capability of the human brain. One way to see the limitations is
by the concept of Miller's magical number seven plus or minus two. The human brain is
limited to keeping track of about seven things. If keeping track of more than seven things
is required to build a stable world society then we have a problem. In the context of this
lecture if more "chunks" (more than seven) are required to understand self-awareness then
we will never understand how we do it. A puppy dog has fewer chunks than the seven.
How many does a chimp have? How can we measure the number of "chunks" for
nonverbal animals or if they also can compute their own existence? Series of delay-non-
matching-to-sample tests may work here.

The illusion of self awareness is aided and abetted by a series of tricks and lies
perpetrated by the human sensory systems; the world is not quite the way it looks, not at
all the way it sounds, and the sense of the flow of time is a total confabulation which runs
about 200 milliseconds behind real time. The purpose of the brain is to construct as
accurate a model of the world as it can given the inevitable limitations of being made out
of meat. The results, though, are really amazing; we live inside our own private bags of
life which are equipped with a seemingly high fidelity stereo sound system, a 3-
dimensional movie display and complete cognizance of touch and smell. We have an
enormous content-addressable memory and can keep track of about seven things
simultaneously. We can manipulate arbitrary symbols and create the illusion that we are
aware of our own existence (and thus compute that it will someday end). Some of the
neural hardware forming the sensory systems was described in this lecture but a complete
description of how it all works does not exist nor is there any reason to imagine that a
human brain could understand it if it did.

VII  Conclusions

It has been shown in several areas that artificial neural networks can make a
significant impact in fighting crime. The biometric authentication systems are being
fielded. The application of neural technology to other crime-related problems is
necessary. This will require a joint effort between experts in the law enforcement area
with signal processing people. Participation at the professional meetings of each group by
the other is critical.
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